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Abstract The paper addresses the possibilities of spatio-temporal statistical modelling of basic hydrophysical 
and meteorological parameters of sea surface layer in the south-eastern Baltic Sea, Curonian Lagoon. The aim 
of the paper is to compare two methods (multivariate linear regression and regression kriging) for the analysis 
of changes and trends of ice phenomena, their dependence on changes in the air temperature, sea surface tem-
perature and water salinity. The prediction of ice conditions for several locations at different distances from 
the reference sites shows that spatial information is an extremely important factor in making forecasts. The 
application of the regression kriging is more efficient than the multivariate linear regression for predicting the 
ice phenomena in semi-enclosed basins and lagoons.
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INTRODUCTION

Water temperature and ice phenomena are the basic 
physical characteristics describing properties of sea 
surface. They have a direct impact on the aquatic 
ecosystems, for the navigation and fishery. While 
monitoring the status and properties of the sea wa-
ter, the sea surface water should be considered as an 
important part of comprehensive analysis of spatial-
temporal variability within existing marine data of the 
Baltic marine environment monitoring programme. 
This analysis is used to determine the current envi-
ronmental status, trends and prognosis foreseen in 
the requirements of European Parliament and of the 
Council formulated in the Marine Strategy Frame-
work Directive (MFSD) (MSFD 2008).

To obtain reliable spatial statistics, it is essential 
to provide a full hydrophysical and hydrochemical 
analysis of the data and to compare the observed re-

sults with the estimated values of different statisti-
cal models. Presently, statistical methods are widely 
used to validate various models. Such methods could 
be found in any quantitative science, including ecol-
ogy and environmental studies. According to Cressie 
(1993) there is a need for new statistical models and 
approaches that address new questions arising from 
both old and novel technologies. The application of 
mathematical models for investigations of marine 
ecosystems often yields substantial scientific merits 
(Renk 1989). Marine hydrodynamic processes are 
among the most changeable, non-linear ones owning 
a multitude of scales in space and time. Thus, it is a 
complicated task to describe various changes in water 
parameters and interactions among them.

The complicated behaviour of climatic systems 
requires the usage of mathematical models with in-
creasing complexity. There is a continuous need to 
improve these models and make them applicable for 
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various purposes. In the recent decades, one of the 
main priorities for scientific research has been cli-
mate variability, particularly because of the observed 
global warming. The global sea surface temperature 
has risen by approximately 1°C in 140 years. This in-
crease is one of the primary physical impacts of cli-
mate change (Coppini et al. 2007). The sea surface 
temperature (SST) in European seas is increasing 
more rapidly than in the World Ocean on average. In 
this context, the coastal lagoons are most vulnerable 
to direct impacts of climate change (Dailidienė et al. 
2011). They serve as links and mediators between ter-
restrial ecosystems and the open sea (Schiewer 2002). 
Among the requirements of the MFSD (MSFD 2008), 
there are the diverse conditions, problems and needs 
of various marine regions or subregions that host spe-
cific marine environment and that require different 
and specific solutions. A comprehensive knowledge 
of the trends in the parameters of the hydrological re-
gime is relevant for not only the knowledge of the 
processes of climate change but also for the develop-
ment of strategies of adaptation to the consequences 
of these processes.

Spatial data about various properties of the sea 
often have a limited resolution and the observation 
points are distributed irregularly. Collecting data in 
a certain period of time may thus cause many irregu-
larities. Solution of the “spatial” problem is generally 
based on various ways to interpolate the data or to 
estimate the average quantities. The data collected in 
a certain time interval are often used to predict the 
future trends or to investigate seasonal processes. In 
many occasions, various spatio-temporal projections 
are required. A straightforward solution is to analyse 
collected spatial data at a single time instant, ignoring 
the temporal changes. Alternatively, it is possible to 
work with the time layers at different points, to pre-
dict, extrapolate and evaluate the values at locations 
outside the sampling area. In general, it is necessary 
to take into account both spatial and temporal correla-
tions and to establish the interrelations between them 
(Dučinskas, Šaltytė-Benth 2003). Another problem is 
a choice of the statistical model. If the data have been 
collected spatially, it is common to start from empiri-
cal semivariogram techniques for the estimation of 
isotropic model parameters such as nugget, sill and 
range. The weighted least squares (WLS) method is 
often used for estimation of above-mentioned param-
eters (Dučinskas, Šaltytė-Benth 2003).

While investigating the characteristics of the spa-
tial distributions of various properties in the natural 
environment or their temporal changes, we often face 
the lack of data. For example, monitoring of vari-
ous sea parameters is often carried out just once or 
a few times per season. As an example, according to 
the Lithuanian State Environmental Monitoring Pro-

gramme (Ministry of Environment of the Republic of 
Lithuania 1998), in Lithuanian territorial waters na-
tional monitoring takes place 4–6 times per year in 
the open Baltic Sea, whereas in the Curonian Lagoon 
monitoring is carried out 1–2 time per month.

This paper is devoted to the analysis of the chang-
es in physical processes in the Curonian Lagoon. The 
main purpose is to analyse changes in the ice phe-
nomena, their dependence on the related changes in 
the air temperature, sea surface temperature (SST) 
and water salinity in the Lithuanian part of the Curo-
nian Lagoon. We employ spatio-temporal analysis of 
hydrophysical data using multiple linear models. This 
method assists in determining whether the network 
of monitoring stations is adequate and optimal, and 
helps to integrate regression coefficients into various 
models (Verfaillie, Lancker, Meirvenne 2006).

MATERIAL AND METHODS

The semi-enclosed and shallow Curonian Lagoon 
(Fig. 1), a large shallow coastal water body situated 
in the south-eastern (SE) part of the Baltic Sea, is 
like a model of a small continental sea having an 
ecosystem that is sensitive to both internal and ex-
ternal pressures. The lagoon is separated from the 
open Baltic Sea by the relatively narrow sandy Cu-
ronian Spit and is connected to the sea only through 
the Klaipėda Strait (width of 0.3–0.6 km) located at 
the northern end of the lagoon. The Curonian La-
goon has a total area of approximately 1584 km2. 
The northern part of the lagoon, that takes about 
413 km² (26 %) of the total area (Ministry of En-
vironment of the Republic of Lithuania 1998), be-
longs to the Lithuanian territory. The southern and 
central parts of the lagoon have almost fresh water 
due to discharge from the River Nemunas (on aver-
age 22 km3 year-1) and other smaller rivers (about 
1 km3 year-1). The salinity in the lagoon ranges from 
<0.5 ‰ till 7.5 ‰ (Dailidienė, Baudler, Chubarenko, 
Navrotskaya 2011). The duration of ice season has 
decreased by about one month in the south-eastern 
part of the Baltic Sea, including the Curonian La-
goon. This change is related to the rise of the mean 
air and water temperatures (Dailidienė, Davulienė, 
Kelpšaitė, Razinkovas 2012). The hydrological re-
gime and the ice phenomena in the lagoon are mostly 
controlled by wind patterns, air temperature, water 
temperature and salinity variations.

To project the mean ice phenomena in the Curo-
nian Lagoon, we use multivariate linear regression 
(MLR) and regression kriging (RK). The focus is on 
two locations in central part of the lagoon (sites 12A 
and 14 in Fig. 1). The first target point is situated in 
the northern part (site 5) of the lagoon and the second 
one in the Klaipėda Strait (3 and 3A). Ice phenom-
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Fig. 1 Location scheme of the study area and monitoring stations (numbers at small circles) in the Curonian Lagoon and 
Klaipėda Strait. Compiled by I. Dailidienė and V. Rukšėnienė, 2014

ena at these points are predicted according to the air 
temperature, sea surface temperature (SST) and water 
salinity data from the monitoring stations (1, 2, 3B, 8, 
10, 12; Fig. 1).

We used water temperature (SST), salinity and ice 
phenomena data collected in the Curonian Lagoon 
monitoring stations operated by the Department of 
Marine Research of the Environmental Protection 
Agency. Observations of air temperature, sea water 

salinity and water temperature are carried out once a 
month. The measurements are not carried out when 
the lagoon is completely covered by ice. The records 
thus represent the time when the ice is melting, drift 
ice periods or without the ice periods. Throughout the 
sampling of data in 1993–2013, the ice phenomena 
were collected in the Lithuanian monitoring stations 
only in 2009–2012. Thus, the data set has been com-
posed for this period.
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We compare two methods: multivariate linear re-
gression (MLR) and regression kriging (RK), in order 
to clarify the dependence of ice phenomena forma-
tion and air temperature, SST and salinity variation 
as well as the dependence of spatial dispersion of ice 
phenomena on these parameters variations and dis-
tance from the sea port gate to the lagoon.

A well-known approach consists of modelling the 
relation between the ice formation and air tempera-
ture, SST and salinity using a linear function

WW
* SbTbTbbI 3210 +++= ,	 [1]

where I* quantifies the ice formation scoring from 1 
to 10 points at location s, b0 is a constant that char-
acterises the value of the intercept, b1, b2, b3 are the 
slope constants; T (°C) is the measurement of the air 
temperature at location s, TW (°C) is the measurement 
of the SST at location s and SW  (‰) is the measure-
ment of the salinity at location s.

Equation [1] converts the values of air tempera-
ture, SST and salinity into a quantity that character-
ises ice formation. This type of regression has the 
major shortcoming that the ice formation is only de-
rived from air temperature, SST and salinity at a sin-
gle location s , regardless of the surrounding values 
(Verfaillie, Lancker, Meirvenne 2006).

The use of geostatistical interpolation techniques 
(generally known as kriging) often provide more op-
tions for spatio-temporal projections than determinis-
tic techniques like trend surfaces. Their advantage is 
the ability of systematic use of the spatial correlations 
between neighbouring observations to predict values 
at unsampled places (Goovarts 1999). The use of ge-
ostatistical techniques requires a relation (like Eq. [1]) 
between the predicted variable (e.g. ice phenomena) 
and secondary variables (e.g. air temperature, SST 
and salinity). It is possible to include this secondary 
information into the interpolation.

A well-known approach consists of modelling the 
relation between the ice phenomena and the air tem-
perature, SST, and salinity using spatial linear models 
with covariates in trend and stationary Gaussian ran-
dom error at location s  and time moment t :

( ) ( ) ( ) ( ) ( ) ( )sSTTI t
W

t
W

ttt* ++++= 3210 ,	 [2]

where I* quantifies the ice phenomena scoring from 1 
to 10 points, β0

(t), β1
(t), β2

(t) and β3
(t) are unknown trend 

parameters, T (°C) is the measurement of air tem-
perature, TW (°C) is the measurement of sea surface 
water temperature, SW (‰) is the measurement of sea 
surface water salinity and ε(t)(s) is random error with 
parametric semivariogram denoted by γ(h, θ).

Suppose ( ) ( ) ( ) ( ) ( )( )ttttt
3210

ˆ,ˆ,ˆ,ˆˆ βββββ =  are ordi-
nary least squares methods (OLS) estimators of 

( ) ( ) ( ) ( ) ( )( )ttttt
3210 ,,, βββββ = . Then the estimated residual 

is ( ) ( ) ( ) ( ) ( ) ( )
W

t
W
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The parameter of semivariograms θ is estimated 
by fitting the model to the values of empirical semi-
variogram given by the following equation:

( ) ( ) ( ) ( ) ( )( )
{ }

∑
=−=

−=
hssnjiji

ji
t

ji

ss
hN

h
;,...,1,:,

2ˆˆ
2

1ˆ εεγ ,	 [3]

where N(h) is the number of data pairs separated by a 
distance h, ( )isε̂  and ( )jsε̂  are the estimated residuals 
at locations si and sj that are separated by distance h. 
The WLS estimator of θ is ( )ϕτσθ ˆ,ˆ,ˆˆ 22= .

The fitting of a theoretical semivariogram (a curve) 
is an important step in the analysis. The “sill” (σ2) is 
the total variance of the variable, the “range” (τ2) is 
the maximal spatial extent of spatial correlation be-
tween observations of the variable and the “nugget” 
(φ) is the random error (Verfaillie, Lancker, Meir-
venne 2006). The exponential, Gaussian and spheri-
cal models were fit to the sample semivariograms. 
The semivariogram models with the smallest ordi-
nary least squares estimates were selected to describe 
the spatial dependencies.

The model presented by Eqs. [1] and [2] has been 
applied using open-source programming language R 
(http://www.r-project.org/), which provides a wide 
variety of statistical (linear and nonlinear modelling, 
classical statistical tests, time-series analysis, clas-
sification, clustering) and high level graphical tech-
niques, a programming language, interfaces to other 
languages and debugging facilities. Prediction of I* 
values at unsampled locations has been made by kri
ging, using estimators of the model given by Eq. [2] 
as described above.

Several indices are suitable to evaluate the inter-
polation. In essence, they all are a measure of estima-
tion error that is the difference I*(Sα)–I(Sα) between 
the estimated and observed values. The mean estima-
tion error MEE has to be about zero for unbiased es-
timators:

( ) ( )( )∑
=α

αα −=
n

* sIsI
n

MEE
1

1
.	 [4]

The mean square estimation error (MSEE) has to 
be as low as possible. This measure is useful for the 
comparison of different procedures. The root mean 
square estimation error (RMSEE) is expressed in the 
same units as the variable in question. This parameter 
has to be compared to the variance or the standard 
deviation of the dataset:

( ) ( )( )∑
=α

αα −=
n

* sIsI
n

MSEE
1

21
.	 [5]
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Table 1  Parameters of semivariograms and minimised sum of squares (MSS) value. Compiled by V. Rukšėnienė, 2014
Estimators 2τ̂ 2σ̂ ϕ̂ MSS

Exponential 9.15 10.98 1.49 44.18
Gaussian 0 10.02 0 48.59
Spherical 9.17 842.27 185.81 44.18

The mean absolute estimation error (MAEE), 
which is analogous to the MSEE, but less sensitive to 
extreme deviations.

( ) ( )∑
=α

αα −=
n

* sIsI
n

MAEE
1

1
.	 [6]

The Pearson correlation coefficient (R) between 
I*(s) and I(s) indicates the degree of linear correlation 
between the observed and estimated values. This value 
has always to be considered in combination with the 
MEE. The correlation coefficient is itself a measure of 
the proportion of variance explained, hence it is related 
to the MSEE (Verfaillie, Lancker, Meirvenne 2006).

RESULTS

The Curonian Lagoon is totally ice-covered 1–3 
times per year in the cold period (from October till 
April). Ice phenomena (from the first appearance of 
ice and until the final disappearance of sea and coast-
al ice) can repeatedly appear inside the lagoon. The 
lagoon’s hydrological regime and the associated ice 
phenomena are mostly controlled by physical factors 
such as air temperature, water temperature, and salin-
ity. The correlation coefficient between ice cover (at 
the observation points) and salinity was the highest 
(r = -0.97; p < 0.05). The presence of ice cover has 
also a strong and statistically significant correlation 
with air temperature (r =  -0.79; p < 0.05) and SST 
(r = -0.70; p < 0.05)

During the period of 1993–2013, the analysis of 
the changes and trends of the ice phenomena, their 
dependence on changes in the air temperature, SST 
and salinity in the Klaipėda Strait and in the central 
and northern parts of the Curonian Lagoon shows that 
application of the regression kriging method is more 
efficient to predict the ice cover than the multivariate 
linear regression.

Using model [1] the relation between the ice for-
mation (I*) and air temperature (T, °C), SST (TW, °C), 
and salinity (SW, ‰) was modelled as:

I* = 6.198+0.014·T – 0.974·TW – 3.628·SW.	 [7]

For the period of 2009–2012, we assessed empiri-
cal semivariogram parameters. According to the min-
imised sum of squares (MSS) criteria, the spherical 
semivariogram model is the optimal one (Table  1). 
Figure 2 presents a comparison of the calculated 

semivariogram values (dots) with the experimental 
semivariogram.

Using the semivariogram model (we applied the 
variofit function in the R language) and the procedure 
described above, the following values of the trend pa-
rameters were obtained: ( ) ( ) ( ) ( ) ( )( )ttttt

3210
ˆ,ˆ,ˆ,ˆˆ βββββ =0 = 5.4081, ( ) ( ) ( ) ( ) ( )( )ttttt

3210
ˆ,ˆ,ˆ,ˆˆ βββββ =1 = -0.2732,  

( ) ( ) ( ) ( ) ( )( )ttttt
3210

ˆ,ˆ,ˆ,ˆˆ βββββ =2 = -1.0622, ( ) ( ) ( ) ( ) ( )( )ttttt
3210

ˆ,ˆ,ˆ,ˆˆ βββββ =3 = -0.4963.

Fig. 2 Empirical semivariogram points and the optimal 
spherical model (solid line). Compiled by V. Rukšėnienė, 
2014

The observed data and the described model were 
applied for the ice conditions prediction using the 
MLR and RK methods. The stations chosen for the 
prediction are located in other parts of the Curonian 
Lagoon: central part (stations 12A and. 14), northern 
part (station 5) and Klaipėda Strait (stations 3 and 
3A). At these locations the changes in the air tem-
perature, SST, salinity and ice forming were fixed in 
2009–2013. The predicted values of the average ice 
cover (scoring from 1 to 10 points) and their mean 
squared prediction error (MSPE) are presented in Ta-
ble 2. The ice cover is measured in a scale (P) from 0 
(there is no ice in the observed area) up to 10 (the area 
is 100 % ice-covered) points.

A comparison of the two prediction methods 
based on the minimum mean squared prediction er-
ror (MSPE) indicates that the RK method provided 
more accurate predictions than the MLR approach. 
The results show that the ice cover formation is most 
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Fig. 3  Scatter plot of observed ice cover (points in the 0–10 scale) and estimated values using multivariate linear regres-
sion (MLR, left) and regression kriging (RK, right). Compiled by V. Rukšėnienė, 2014

Table 2 Results of predicted ice cover in points (I*) and their mean squared prediction error (MSPE). P stands for the aver-
age scoring (from 1 to 10) at selected points. Compiled by V. Rukšėnienė and I. Dailidienė 2014

Stations Latitude Longitude Locations
Linear regression Regression kriging

I* P MSPE I* P MSPE

3 55°40’N 21°08’E Strait 1.0624 1 5.64 1.5353 2 3.62

3A 55°38.8’N 21°09.8’E Strait 0.0555 0 4.23 0.1725 0 0.03

5 55°31.8’N 21°08.2’E Northern part 1.4105 1 10.73 3.3552 3 1.78

12A 55°20.8’N 21°18.1’E Central part 5.3073 5 1.73 4.1646 4 0.03

14 55°15.8’N 21°04.7’E Central part 4.9247 5 24.25 4.1663 4 17.36

accurately described by the air temperature, SST and 
salinity changes in the central part of the lagoon (sta-
tion 12A) and in the Klaipėda Strait (station 3A). The 
maximum extension of ice cover during the winter 
period is expected to occur in the central part of the 
lagoon.

The results suggest that the ice cover in the lagoon 
may be scored by 4 points in the monitoring stations 
12A and 14 (Fig. 1, Table 2) in 2009–2013. Station 
14 is the most remote from the stations that were in-
cluded into the sample (Fig. 1). The MSPE for this 
station is the largest according to both methods. This 
shows that in order to get more accurate predictions, 
it is important to take into account the spatial distribu-
tion of the observations.

The validation is applicable when the primary goal 
is the prediction. It helps to determine how well the 
proposed model describes the analysed data. At first, 
useful information is provided by scatter plots (Fig. 
3) of the observed and the estimated values.

The validation indices are presented in the Table 
3. The scatter plot is related to the Pearson correla-
tion coefficient. The values of the validation indices 
suggest that the error is larger for the multivariate lin-
ear regression than for the regression kriging, except 
for the mean estimation error (MEE). Moreover, the 
MEE of the multivariate linear regression is lower 
than for regression kriging. For the multivariate linear 

regression method the correlation coefficient is much 
lower than for the regression kriging method. Other 
validation indices may provide additional informa-
tion about the accuracy of the used models.

Table 3 Validation indices for multivariate linear regression 
(MLR) and regression kriging (RK): the mean estimation 
error (MEE), the mean square estimation error (MSEE), 
the root mean square estimation error (RMSEE), the mean 
absolute estimation error (MAEE), Pearson correlation co-
efficient (R). Compiled by V. Rukšėnienė, 2014

MLR RK

MEE 0.116 0.254

MSEE 8.468 4.562

RMSEE 2.910 2.136

MAEE 2.788 1.548

R 0.031 0.325

As Eqs. [1] and [2] were used for modelling the 
relation between the ice phenomena and the air tem-
perature, SST and water salinity, it is important to 
consider several functions of semivariogram in order 
to thoroughly evaluate the quality of estimates. In 
general, different models of semivariogram mean dif-
ferent values of the minimised sum of squares (MSS). 
The smallest MSE indicates the single model that fits 
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the best model of semivariogram. The calculated val-
ues of σ2, τ2 and φ in semivariograms [3] (Table 1) 
illustrate the exponential, Gaussian and spherical 
semivariogram models with values of minimized sum 
of squares. The spherical semivariogram is an opti-
mal model for the problem in question. As discussed 
above, a longer distance means a reduced amount of 
spatial information and thus a less accurate forecast 
(Dučinskas & Šaltytė-Benth 2005). The predictions 
carried out in the stations with different distances un-
derline the importance of spatial information in such 
projections.

CONCLUSIONS

Regression kriging and multivariate linear regres-
sion methods have been used in order to clarify the 
dependence of ice phenomena formation on varia-
tions in the air temperature, SST and salinity in the 
Curonian Lagoon. The discussed dependence is not 
always straightforward because of the transit nature 
of the lagoon system. In such water bodies, there is 
a particularly complicated task to predict ice forma-
tion as air temperature, SST and salinity often vary in 
time depending on meteorological and hydrodynamic 
conditions, and wind impact or wave fields may play 
a large role in the formation of the ice cover in the 
coastal areas of the Baltic Sea (Zaitseva-Pärnaste, 
Soomere 2013). While designing the models, it is 
important to assess the weight of the variable param-
eters. Often, the monitoring stations selected in water 
basins can not be used in models, as measurements 
carried out there do not completely describe the status 
of water basin.

Often spatial data sets are limited and the observa-
tion points are distributed irregularly, so the data are 
not always available. Suitable mathematical models 
and an optimal selection of the monitoring stations 
would partly solve the problem. The most difficult 
task is to choose the appropriate methods in transit 
zones between the sea and river mouths, as there oc-
curs in this case of the Curonian Lagoon.

The performed analysis shows that application 
of the regression kriging is more efficient for pre-
dicting the ice cover in such almost closed basins 
as the Curonian Lagoon comparing to the multivari-
ate linear regression. A comparison and validation 
of these two approaches supports the conjecture 
that the regression kriging is a better interpolation 
method. In the discussed example, it becomes evi-
dent that the air temperature, SST and salinity vari-
ability describe the formation of the ice coverage 
in the central part of the lagoon in a more reliable 
way. In the northern part of the lagoon and Klaipėda 
Strait the ice cover formation could be also predict-
ed, however, the used methods are related too much 

larger uncertainties and prediction errors, as most 
likely these parts are more exposed to marine water 
inflow. During the cold period, the larger amount of 
saline and warmer water entering the lagoon from 
the Baltic Sea proper may prevent the formation of 
a stable ice cover.

This feature vividly demonstrates the problems re-
lated to the adequate calculation and interpretation of 
the role of existing conditions when the environmen-
tal interface of air temperature, water temperature 
and salinity varies and cannot be exactly calculated 
by the geophysical environmental models. This is an 
intrinsic component of the dynamics of the northern 
part of the lagoon that functions as the transition zone 
between the rest of the lagoon and the open Baltic 
Sea. In particular, intense hydrodynamic patterns in 
this zone often prevent the formation of a stable ice 
cover.
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