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Abstract During the blooming season, algal colonies can, in extreme cases, cover up to 200 000 square kilo-
metres of the Baltic Sea water surface. Because the position and shape of the blooms may significantly change 
in a very short time due to the influence of wind and waves, regular monitoring of the blooms’ development 
is necessary. Currently, the desired monitoring frequency  may only be achieved by means of remote sensing. 
The article presents a novel method of AVHRR data processing for the purpose of detection of algal blooms 
in the Baltic Sea. Instead of analysing the value of spectral reflectance of the algae, the algorithm analyses the 
frequency distribution of normalized difference in reflectance between the visible and near-infrared spectral 
bands. The proposed method has been implemented and tested as part of an operational Geographic Informa-
tion System.
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IntROductIOn

For many years the Baltic Sea has been home to 
large blooms of microalgae capable of performing 
photosythesis through the use of pigment chlorophyll 
and absorption of yellow-orange light (Lignell,1993). 
They commonly bloom in large colonies, which tend 
to form large mats on water surface. Given enough 
nutrition, they easily dominate the reservoir’s natu-
ral phytoplankton and grow in numbers large enough 
to make the water dangerous to animals and humans 
alike (Stewart et al. 2006). The presence of microalgae 
has many adverse effects on the affected basin. First 
of all, large colonies of microalgae increase water tur-
bidity, which makes it unusable for agricultural and 
industrial applications (Klapper 1991). Dense colo-
nies of harmful microalgae may also cause problems 
for sailors and thus negatively affect the local industry 
(Pitois et al. 2000). Aside from affecting water clarity, 
harmful microalgae tend to generate unpleasant odour 
which drives away enthusiasts of boating and swim-

ming (Dodds et al. 2009). More serious effects of algal 
blooms include elevation of water pH and oxygen de-
pletion, which have a devastating effect on indigenous 
flora and fauna of the water reservoir (Havens 2007). 
Finally, certain types of microalgae, such as cyano-
bacteria, are highly toxic. For example, ingesting even 
relatively small amounts of Microcystis aeruginosa 
can damage the subject’s liver, intestines, and nervous 
system (Falconer et al. 1983). All of this makes micro-
algae dangerous to the well-being of humans and ani-
mals which are in any way dependant on the affected 
water reservoir. Although algal blooms are a natural 
phenomenon, the increase in industrial processes dur-
ing the 20th century have transformed the ecosystems 
of certain water reservoirs in such a way that these 
microorganisms have become a serious threat (Gil-
bert et al. 2005). The Baltic Sea has attracted several 
types of these organisms, in particular the hepatotoxic 
Nodularia spumigena and Aphanizomenon flos-aquae, 
which tend to form surface accumulations covering a 
substantial portion of the basin (Sivonen et al. 1989).
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Monitoring water reservoirs for signs of algal 
blooms has been a subject of intense research for 
many years. Aside from in-situ measurements, which 
are the most reliable but also the most expensive 
method of microalgae detection, much attention has 
been paid to development of appropriate remote sens-
ing methods.

Because microalgae tend to form large swaths 
which may reach ~200 000 km2   (Kahru, Elmgren 
2014), the dense accumulations may be identified 
visually by analysis of the visible bands. In 1997 
Kahru manually prepared a time series of Advanced 
Very High Resolution Radiometer (AVHRR) images 
to demonstrate a method of detecting algal blooms in 
the Baltic Sea by thresholding the swath reflectance 
in the visible band (Kahru 1997). The method gen-
erally worked for large accumulations, but the high 
variance of reflectance values recorded in consecu-
tive images meant that the thresholding of every im-
age required an individual approach to obtain correct 
results. This, along with some degree of uncertainty 
regarding the identification of less dense accumula-
tions, made the method unsuitable for automatic data 
processing (Kahru et al. 2007). 

While only large concentrations may be identified 
visually, all floating algal colonies contain pigment 
chlorophyll which exhibits a peak in reflectance in 
the visible red channel (near 650 nm) and signifi-
cantly lower reflectance in the near-infrared channels 
(around 750 nm). One of the oldest methods of find-
ing pigment chlorophyll by exploiting this difference 
in reflectance is computing the Normalized Differ-
ential Vegetation Index (NDVI). Although the index 
was developed for the purpose of detecting vegeta-
tion over land (where it tends to form a similar peak 
in reflectance near 750 nm), over the years several 
researchers from around the world applied NDVI to 
manual detection of algal blooms with varying de-
grees of success (Kahru et al. 1993; Kutser 2004; 
Oyama et al. 2014), however the index has generally 
been found to be too sensitive to interference from 
aerosols and sun glint to produce a consistent time se-
ries (Hu et al. 2010). Thus, the results of quantitative 
NDVI-based microalgae detection always needed to 
be manually verified and corrected. Later research 
focused on techniques which took advantage of in-
creased spectral resolution offered by sensors such 
as Moderate Resolution Imaging Spectroradiometer 
(MODIS), Medium Resolution Imaging Spectrora-
diometer (MERIS) and Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS). These sensors delivered 
substantially more spectral bands which in turn ena-
bled instant verification of classification results, eg. 
by comparison to composite true colour images (Hu 
et al. 2010). Over the years they have been used to 
develop several methods of algae detection, including 

the maximum chlorophyll index, which relates the 
water-leaving reflectance at 709 nm to the value ex-
trapolated from bands 681 nm and 753 nm (Gower et 
al. 2005), the floating algae index, which applies the 
same principle to the 859 nm, 645 nm and short-wave 
infrared bands (Hu 2009), and the cyanobacteria in-
dex, which detects cyanobacteria-specific reflectance 
ratios in the visible spectrum (Wynne et al. 2008). 

The application of these methods to operational 
algal bloom detection and monitoring over the Baltic 
Sea is not straightforward, however. The main issue 
here is related to data availability. The Baltic is of-
ten clouded, which sometimes makes it problematic 
to find appropriate images for analysis. Out of the 
available satellite sensors, only AVHRR (installed on 
seven satellites: NOAA-15, 16, 17, 18 and NOAA-19 
as well as MetOp-A and B) guarantees the delivery 
of several images of the Baltic during the daily hours. 
As far as the more advanced sensors are concerned, 
MODIS (limited to two satellites: Aqua and Terra) de-
livers on average a single image per day and Landsat 
satellites visit the region approximately once a week 
(Kahru, Elmgren 2014), while MERIS and SeaWiFS 
have been phased out entirely. Moreover, although 
dense clouds may be easily removed from a partially-
clouded image, the remaining atmospheric artefacts 
such as water vapour significantly influence the re-
corded reflectance. For instance, the values of com-
puted NDVI could be lower by as much as 0.1 for un-
corrected data (Tanre et al. 1992), which could mean 
the difference between classifying a land-based pixel 
as vegetation or bare soil (Sobrino, Raissouni 2000). 
The various methods of identifying and removal of 
such artefacts are referred to as atmospheric correc-
tion, and involve extensive use of external reference 
data sources, such as sun photometers (Vermote et 
al. 1995; Fedosejevs et al. 2000), operational atmos-
pheric radiance models (Trishchenko et al. 2002) and 
weather simulation models (Vermote et al. 2002). 
Thus far operational atmospheric correction methods 
which use data provided by the sensor itself have only 
been presented for the MODIS sensor, which offers 
high short-wave infrared resolution (Wang, Shi 2007; 
Okin, Gu 2015; Roy et al. 2014). This being said, the 
process of removing atmospheric artefacts from an 
image is a complex one, and even the availability of 
reliable reference data does not guarantee successful 
correction of the image. On the contrary, low signal-
to-noise ratio of the input data or imprecise calibra-
tion of the correction algorithms may only result in 
introducing additional errors. (Kahru, Elmgren 2014) 
report that atmospheric correction of AVHRR data 
over the Baltic Sea often results in physically impos-
sible negative values of water-leaving radiance, de-
spite of the quality of used calibration coefficients. 
On the other hand, (Reinart, Kutser 2006) established 
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that standard algorithms for atmospheric correction, 
which employ the near-infrared and short-wave in-
frared bands of the MODIS sensor, often fail over 
the Baltic Sea, causing many pixels to be incorrectly 
flagged as erroneous. This is a particular problem 
during the microalgae blooming season, when high 
chlorophyll values generated by dense microalgae ac-
cumulations are removed from the image by the cor-
rection algorithms (Reinart, Kutser 2006).

Another problem with detecting microalgae is 
caused by the different spectral characteristics of deep 
and shallow waters. In particular, shallow coastal wa-
ters most often contain a high number of suspended 
organic matter. Because of this, they exhibit sub-
stantially higher spectral reflectance characteristics 
in comparison to clear open waters. In consequence, 
turbid and open waters must be processed differently 
even at the stage of atmospheric correction (Hu et al. 
2000) and algorithms for detecting microalgae (which 
bloom primarily in open waters) most often mask out 
known turbid water regions (Kahru, Elmgren 2014). 

It also should be noted that establishing the den-
sity of algal concentration is virtually impossible us-
ing remote sensing because microalgae can regulate 
their buoyancy and often create dense accumulations 
just below the opaque surface layer. Determining the 
actual amount of algae in such conditions is very dif-
ficult even when using a research vessel (because ves-
sels disturb the natural distribution of phytoplankton). 
Thus, while remote sensing allows for mapping the 
location and extent of algal bloom, it should not be 
used to quantify its density (Metsamaa et al. 2006).

Aside from the issues with data availability and 
quality, it must also be noted that chlorophyll-a, al-
though widely used as a marker of algal presence, 
is also found in other types of phytoplankton. Be-
cause of this, some researchers prefer to measure the 
amount of pigment phycocyanin (PC) which is char-
acteristic for cyanobacteria (Ruiz-Verdu et al. 2008). 
Although satellite-based detection of PC requires 
analysis of spectral channels which are not provided 
by the AVHRR sensor, in-situ measurements of PC 
fluorescence can be applied to verification of algal 
blooms obtained from AVHRR satellite images. This 
is because cyanobacteria are characterized by much 
stronger backscattering in the 650 nm spectrum in 
comparison to other species of phytoplankton (Met-
samaa et al. 2006; Ruiz-Verdu et al. 2008; Kahru, 
Elmgren 2014). Thus, the peak in reflectance near 
650 nm may be detected via remote sensing even if 
the amount of cyanobacteria in biomass is as low as 
15% (Metsamaa et al. 2006). Even if regular phyto-
plankton would form a swath dense enough to exhibit 
a similarly strong peak of reflectance, such a dense 
swath could only form during the blooming season of 
June-August. However, during the blooming season, 

cyanobacteria constitute between 72 and 94 percent 
of floating biomass in the Baltic Sea (Dekker et al. 
1992). Thus analysis of strong peak reflectance in 
the upper visible spectrum accompanied with low 
infra-red reflectance, although theoretically typical 
for chlorophyll-a in general, is a widely accepted 
method of detecting harmful microalgae over both 
turbid (Randolph et al. 2008) and open waters (Rein-
art, Kutser 2006; Kahru, Elmgren 2014).

As far as operational monitoring of algal blooms in 
the Baltic Sea is concerned, there are several ongoing 
initiatives. The Baltic Algae Watch System (BAWS) 
is a web service maintained by the Swedish Mete-
orological and Hydrological Institute (SMHI) (SMHI 
BAWS 2016). The institute performs classification 
of satellite images from the MODIS sensor using the 
method by (Kahru et al. 2007) to identify surface and 
subsurface algal blooms by analysis of the normal-
ized water-leaving radiances (nLw) in the 551 nm and 
670 nm bands (Hansson, Hakansson 2007). The clas-
sification results are verified and commented on by 
an expert prior to being published online in the form 
of static images. Although very informative, the serv-
ice does not allow any interaction with the presented 
data, and the produced images have a relatively small 
resolution. In parallel, the institute performs regular 
cruise vessel expeditions to the Baltic Proper which 
measure and describe water qualities such as oxygen-
ation and presence of algal blooms. While the SMHI 
cruises are organized every 2–3 weeks, the Finnish 
Environment Institute (SYKE) provides similar data 
on a daily basis through the Alg@line initiative. 
Alg@line operates by equipping regular Baltic ferry 
ships with dedicated flow-through sensors (referred 
to as “Ferryboxes”) which measure water salinity 
and turbidity as well as chlorohyll, phycocyanin and 
CDOM fluorescence. Built-in GPS receivers enable 
Ferryboxes to record the precise time and location of 
taken measurements, which are then made available 
online via a simple web mapping service (SYKE Al-
gal Situation service 2016). The data is also available 
directly via a Web Feature Service provided by the 
FerryScope project (FerryScope WFS data service 
2016). Although the in-situ measurements provided 
by Alg@line have very good temporal resolution, 
their scope is limited to the ferry lines ship routes, 
which omit large portions of the Baltic Proper includ-
ing the Gulf of Riga, the Gulf of Gdansk, and most of 
the Eastern Gotland Basin (Kaitala 2016).

In-situ measurements are also provided by the 
International Council for the Exploration of the Sea 
(ICES) HELCOM network of Baltic Sea monitor-
ing stations. The stations provide measurements of 
characteristics such as temperature, salinity and con-
centration of chlorophyll-a in different points of the 
basin. The HELCOM web page currently lists 730 
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available data sources, however not all of them are 
active simultaneously, and the availability of in-situ 
measurements for a given area and time period is not 
guaranteed (HELCOM data portal 2016).

To sum up, operational detection of algal blooms 
in the Baltic Sea is an endeavour that is both expensive 
and prone to error. First of all, the presently available 
remote sensing detection methods operate on MODIS 
data which may only be obtained through a very ex-
pensive X-Band Earth Observation System, or from 
third-party online services (eg. NASA Ocean Color: 
http://oceancolor.gsfc.nasa.gov). Secondly, the avail-
able services rely on quantitative image classification 
methods, which are highly dependant on the quality of 
the sensor’s atmospheric correction. Moreover, the visu-
alization functionalities of the currently available online 
systems do not provide even such basic user interaction 
features like zooming and panning. Finally, the low 
temporal resolution of the MODIS sensor, coupled with 
the usual weather conditions in the Baltic region often 
lead to large portions of the sea being obscured in the 
recorded satellite images. At the same time, available in-
situ measurements are too limited either in scope (Alg@
line) or in time (HELCOM) to provide daily reports on 
the algae situation in the entire Baltic Sea basin.

In this context, the current situation could be im-
proved by a system capable of unsupervised algae 

bloom detection using data provided by a sensor with 
a better temporal resolution than the one offered by 
MODIS. Providing the users with online tools for ad-
vanced analysis of the produced data, such as an in-
teractive map with capabilities for zooming and pan-
ning over areas of interest and changing the colour 
scheme could prove to be even more beneficial.

This article presents a novel, non-quantitative and 
cost-effective method of operational detection of algal 
blooms in the Baltic Sea via a dedicated Geographic 
Information System for analysis of AVHRR data.

MAteRIAl And MetHOdS

The study area presented in this work encompass-
es the Baltic Sea from the Eastern half of the Arkona 
Basin in the West to the Southern part of the Gotland 
Basin in the North (Fig. 1).

The presented work uses satellite images recorded 
by the AVHRR sensor, which provides a spatial res-
olution of about 1.1 km and a spectral range which 
covers five channels. AVHRR observes the follow-
ing parts of the electromagnetic spectrum (USGS 
AVHRR 2008): 

• Band 1: 0.58–0.68 μm
• Band 2: 0.725–1.10 μm
• Band 3: 3.55–3.93 μm

Fig. 1 The area of research encompasses the Southern Baltic Proper from the Eastern half of the Arkona Basin in the West 
to the Southern part of the Gotland Basin in the North
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• Band 4: 10.50–11.50 μm
• Band 5: 11.5–12.5 μm

In the analysed region, the AVHRR sensor pro-
vides an average of seven images every 24 hours. 
After being cut down to the desired area, the images 
have a resolution of 1200 x 800 pixels.

As far as microalgae monitoring is concerned, the 
two first bands are most significant, as they represent 
the “Red” (visible) and “Near Infrared” (NIR) frag-
ments of the spectrum. In particular, open water bod-
ies generally exhibit high absorption in both the Red 
and NIR spectra, while according to Ahn et al. (1982), 
microalgae may be distinguished by high reflectance 
in the upper part of the visible (650–670 nm) spec-
trum, and low reflectance in the infrared (750 nm) 
spectrum. In particular, toxic microalgae such as 
cyanobacteria exhibit a higher peak reflectance at 
650 nm in comparison to other types of floating phy-
toplankton (Kutser 2009). 

While both past as well as currently employed 
methods of satellite-based microalgae bloom de-
tection exploited the high reflectance in the visible 
(650 nm) band, automatic identification of algae colo-
nies using AVHRR has been unsuccessful due to the 
variability in recorded spectral reflectance between 
consecutive images (Hu et al. 2010; Kahru, Elmgren 
2014). In fact, universal threshold values identify-
ing microalgae has been shown to be very problem-
atic even for atmospherically corrected MODIS data 
(Kahru, Elmgren 2014). 

Instead of looking for universal values of reflect-
ance which would identify microalgae in every satel-
lite image, the presented work concentrates on iden-
tifying high reflectance values in the 650 nm band by 
their comparison to the corresponding reflectance in 
the 750 nm band, individually for every satellite im-
age. Because every satellite image is produced under 
different weather conditions, the difference in record-
ed spectral reflectance is best analysed after normali-
zation. A well-known method of normalization the 
difference in spectral reflectance in the Red and NIR 
channels has been defined by Rouse et al. (1974):
NDVI = (NIR – RED)/(NIR + RED)  (1), 

The possible values of NDVI fall in the range of 
(–1; 1). The index is particularly useful for identifi-
cation of various features in satellite images. NDVI 
values in the range (–0.1; 1) typically describe vari-
ous land surfaces (Justice et al. 1985; Roderick et al. 
1996; Sobrino, Raissouni 2000). Moreover, NDVI 
values in the range (–0.1; 0.1) have also been shown 
to contain clouds (Simpson, Stitt 1998). Water sur-
face is represented with near-zero values (–0.1; 0), 
while microalgae are characterized by NDVI values 
of –0.2 and lower (Ahn et al. 1982; Hu, He 2008). 
This remains true for both coastal and open waters, 

with the significant difference being the values of re-
flectance in both water types (Kutser 2009). 

Theoretically, the analysis of NDVI histograms 
for satellite images captured outside of the algae 
blooming period should reveal a strong concentration 
of near-zero values representing clear water. Simi-
larly, analysis of NDVI frequency distribution for 
images containing strong algae blooms should reveal 
a multi-modal (in the case of weak blooms, the near-
zero mode would represent clear water) or unimodal 
(for strong blooms) histogram in the negative NDVI 
range. In both cases the mode representing microalgae 
would be located at the negative end of the NDVI dis-
tribution. Because NDVI values in the range (–0.1; 0) 
are known to contain water (Ahn et al. 1982) as well 
as clouds (Simpson, Stitt 1998), and the margin of 
error for NDVI values obtained from AVHRR (due 
to atmospheric interference) is known to be up to 0.1 
(Tanre et al. 1992), the final NDVI interval in which 
microalgae might be identified without risking false 
positives would fall in the range of (–1; –0.2).

Mathematically, the proposed approach could be 
described as follows.

A pixel represents microalgae if its NDVI value 
(cNDVI) falls in the range:
cNDVI ϵ (–1, ..., xmode), 

where the modal value xmode is given by: 
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values within the range (rj, rj+1),
fn(k, X) = max fn(j, X), j = 1, ..., K is the modal interval 
of the NDVI frequency analysis,
X represents the set of samples (x1, ... xn),
K denotes the number of analysed intervals, and
rk is the lower boundary of the k interval.

The presented algorithm has been implemented as 
part of an operational system for microalgae bloom 
detection in the Baltic Sea (Fig. 2). The main source 
of data for the presented system is a 1.5m-wide HRPT/
MetOp-A/B local satellite ground station operated 
by the Gdansk University of Technology Faculty of 
Electronics, Telecommunications and Informatics in 
Gdansk, Poland. The station downloads data in real-
time from overpassing AVHRR satellites via the High 
Rate Picture Transmission (HRPT) stream (Moszyn-
ski et al. 2015). 

The images captured by the satellite ground station 
are automatically processed by the Dartcom iDAP 
module, which puts together lines of the HRPT stream 
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to form images. The software is configured to convert 
the obtained images into multiband GeoTIFF files af-
ter basic processing involving masking out missing 
lines of data. Every time a new GeoTIFF file arrives, 
it is automatically detected by a monitoring script 
which passes it to the microalgae detection module. 
The microalgae detection module consists of several 
sub-modules built with the Open Source GeoTools li-
brary. The GeoTIFF is first processed by the NDVI 
calculation sub-module, which extracts raw AVHRR 
bands 1 (0.58–0.68 μm) and 2 (0.725–1.0 μm) from 
the file and uses them to compute NDVI for the en-
tire image. The resulting single-band raster is passed 
on to the land&cloud masking sub-module, which re-
moves all pixels with NDVI values larger than –0.2. 
The resulting raster is passed on to the frequency dis-
tribution sub-module, which finds the maximum and 
minimum NDVI values in the image and computes a 
256-bin histogram. The module then finds the mode of 
negative NDVI distribution. In order to avoid possible 
errors caused by local variations in recorded spectral 
reflectance, the histogram mode is only accepted if 
it contains at least 0.5% of all pixels in the analysed 
image (for the images used in this study, this corre-
sponds to a value of 5000 pixels). The microalgae 
detection module produces single band GeoTIFF 
images which contain the detected microalgae accu-
mulations represented by values of negative NDVI 
found between the histogram mode and the smallest 

detected value of NDVI. Images in this form are then 
processed by the Geovisual Analytics module, which 
performs their adaptive palette matching for the pur-
pose of pixel value normalization. The name of the 
module refers to the field of science which deals with 
solving geographic problems requiring analytical rea-
soning and dissemination of information to a variety 
of audiences (Andrienko et al. 2007; Kulawiak, Lub-
niewski 2013). For every image, the Geovisual Ana-
lytics module produces two distinct colour palettes 
in the form of Open Geospatial Consortium (OGC) 
Styled Layer Descriptor (SLD) files. The default pal-
ette is meant to present the general shape of the algae 
colony, while the alternate one is dedicated to provid-
ing a better contrast between individual NDVI values 
in the bloom area. This allows for individual analysis 
of every image via dynamic palette swapping at the 
visualization stage through the client module of the 
system. The SLD and GeoTIFF images are then reg-
istered in the GeoServer module, which is an Open 
Source Web Map server with excellent support for 
open standards of data exchange and dissemination. 
It supports a variety of raster and vector data formats, 
such as Shapefile, SVG, KML, GML, GeoTIFF, JPG, 
PNG or PostGIS, allows for their individual styling 
using SLD files, and enables their Web-based presen-
tation through open protocols such as OGC Web Map 
Service (WMS), Web Feature Service (WFS) or Web 
Coverage Service (WCS). Once the GeoTIFF images 

Fig. 2 Architecture of the Web-GIS for operational microalgae detection
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have been registered in the GeoServer database, they 
are remotely accessible to clients through the WMS 
protocol. The presented system provides users with a 
Web client built in DHTML using the Open Source 
OpenLayers library. OpenLayers allows for the con-
struction of interactive GIS applications for display 
and manipulation of vector and raster geospatial data, 
which can be obtained from external sources through 
standard protocols such as WMS and WFS. Because 
OpenLayers is written in pure Javascript, it is easily 
integrated with Javascript frameworks such as Ext.
js, allowing for building advanced GIS functionali-
ties with rich Graphical User Interface (GUI), which 
run in any standard-compliant Web browser without 
the need to install plug-ins. The OpenLayers client 
allows end users to browse the detected microalgae 
accumulations in the form of thematic layers overlaid 
on satellite images of the Baltic Sea basin. Aside from 
standard operations like zooming, panning and chang-
ing the visibility of individual layers, the OpenLayers 
client also enables the user to apply alternative colour-
ing palettes (via the ‘styles’ part of the WMS GetMap 
request) to every microalgae layer in real-time.

The presented system has been applied to detec-
tion of microalgae in the Baltic Sea during the bloom-
ing periods of 2013 and 2014. According to the re-
ports from SMHI vessel cruises, the 2013 microalgae 
blooms started in late June and lasted through July 
(Thell 2013b; Thell 2013c). This is confirmed by ship 
transects from Alg@line vessels, which show a rapid 
drop in phycocyanin (PC) reflectance recorded in the 
Baltic Proper between 27.07.2013 and 04.08.2013 
(FerryScope WFS data service 2016). In 2014, the 
SMHI cruise vessels reported sightings of algae colo-
nies in the second half of June as well as July and 
August (Thell 2014; Andersson 2014). The Alg@
line measurements also show heightened PC reflect-
ance during this time period, however unlike in the 
previous year, the PC values show greater variability 
which indicates more dynamic changes on the surface 
of the bloom.

Basing on those reports, the periods of 15.06.2013–
31.08.2013 and 15.06.2014–31.08.2014 (a total of 
156 days) were selected for investigation. During this 
time, the AVHRR station received and stored 1018 
images. 363 out of which were captured in the time 
span between 10:00 UTC and 15:00 UTC (which 
provides best solar irradiance of the Baltic). Due to 
bad weather conditions, 140 of those images were 
completely clouded in the analysed area, while 113 
exhibit cloud cover in the range 60%–80%. In the 
end, out of 110 images captured on 44 days of good 
weather, one best image for each day was used in the 
presented work.

For the purpose of verification, the results obtained 
via the presented methodology have been compared 

in-situ measurements of phycocyanin reflectance 
along the Travemuende-Helsinki and Travemuende-
Kemi ferry routes performed by SYKE Ferrybox 
vessels in the scope of the FerryScope project (Fer-
ryScope WFS data service 2016). In the selected time 
period, the FerryScope data service provides meas-
urements on 49 days, which can be matched to 13 
satellite images captured on days with good weather 
conditions. In order to provide reference data for other 
satellite images, in-situ chlorophyll-a measurements 
obtained from the HELCOM data portal (HELCOM 
data portal 2016) have also been used. In the selected 
time period there are only 18 days during which the 
HELCOM stations provide measurements form more 
than one station. After aggregation, these measure-
ments may be used as reference data for five satellite 
images captured in good weather conditions.

For additional optical verification, the study uses 
algae concentration assessments produced by SMHI 
through classification of MODIS data using the 
method by (Kahru et al. 2007), as well as true-colour 
MODIS Aqua images supplied by NASA through 
the agency’s Ocean Color website (http://oceancolor.
gsfc.nasa.gov). The results of these comparisons are 
presented in the following section.

ReSultS

This section presents the microalgae colonies de-
tected by the presented system. The algae concentra-
tions are presented in the form of WMS layers overlaid 
on background satellite images of the Baltic (Fig. 3; 
Fig. 4). Every figure also contains an additional layer 
which represents reference in-situ measurements of 
phycocyanin fluorescence or chlorophyll-a values 
for the time period matching the day the satellite im-
age was recorded. The mean value of chlorophyll-a 
concentration in the analysed area in the period of 
01.01.2013–31.12.2014 is 2.46 µg/L, while the medi-
an value is 1.69 µg/L. The mean value of recorded PC 
fluorescence for the period of 20.03.2014–27.08.2014 
is 0.08, and the first non-zero values in that period 
have been recorded on 05.06.2014. Scatterplots of PC 
fluorescence against AVHRR NDVI are also present 
for dates on which more than 20 PC measurements 
could be matched to corresponding NDVI values.

The detected algae concentrations are presented 
according to the two colour schemes provided by the 
client module of the Web GIS. In the default mode, 
the extent of microalgae is depicted by colour, while 
the variance in detected surface accumulation is rep-
resented by intensity. The alternate display mode 
employs a false-colour representation in which the 
detected variance in microalgae accumulation is de-
picted using a dedicated colour gradient. In this mode 
red colour represents the highest detected negative 



10

Fig. 3A-3c. In-situ measurements from HelcOM stations: A. Recorded in the period between 2013.06.17 and 
2013.06.18 overlaid on a microalgae colony detected in the AVHRR image captured on 2013.06.18. The chlorophyll-a 
values range from 1.3 µg/L West of Oland to 5.16 µg/L in the Bay of Gdansk. The applied colour scale does not include 
the value of 47.5 µg/L, which was recorded in the Vistula Lagoon (bottom of map). B. Recorded in the period between 
2013.06.24 and 2013.06.27 overlaid on a microalgae colony detected in the AVHRR image captured on 2013.06.24. The 
chlorophyll-a values range from 3.3 µg/L to 3.9 µg/L. c. Recorded in the period between 2013.07.15 and 2013.07.17 
overlaid on a microalgae colony detected in the AVHRR image captured on 2013.07.17.  The chlorophyll-a values 
range from 2.3 µg/L to 4.1 µg/L. Fig. 3d-3H. In-situ measurements from Ferrybox vessels: d. Recorded in the pe-
riod between 2013.07.20 and 2013.07.21 overlaid on a microalgae colony detected in the AVHRR image captured on 
2013.07.21. The PC fluorescence values range from 0.098 to 0.246. e. Recorded in the period between 2013.07.24 and 
2013.07.25 overlaid on a microalgae colony detected in the AVHRR image captured on 2013.07.24. The PC fluorescence 
values range from 0.116 to 0.152. F. Recorded in the period between 2013.07.27 and 2013.07.31 overlaid on a microal-
gae colony detected in the AVHRR image captured on 2013.07.31. The PC fluorescence values range from 0.09 in the 
Arkona Basin to 0.297 in the Baltic Proper. G. Recorded on the period between 2013.08.01 and 2013.08.02 overlaid on a 
microalgae colony detected in the AVHRR image captured on 2013.08.01. The PC fluorescence values range from 0.052 
to 0.088. H. Recorded in the period between 2013.08.01 and 2013.08.03 overlaid on a microalgae colony detected in the 
AVHRR image captured on 2013.08.03. The PC fluorescence values range from 0.052 to 0.155
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Fig. 4A, 4G. In-situ measurements from HelcOM stations: A. Recorded in the period between 2014.06.11 and 
2014.06.19 overlaid on a microalgae colony detected in the AVHRR image captured on 2014.06.15. The chlorophyll-a 
values range from 0.1 µg/L East of Oland to 3.28 µg/L in the Bay of Gdansk. The applied colour scale does not include 
the value of 38.6 µg/L, which was recorded in the Vistula Lagoon (bottom of map). G. Recorded in the period between 
2014.08.06 and 2014.08.08 overlaid on a microalgae colony detected in the AVHRR image captured on 2014.08.07. The 
chlorophyll-a values range from 1.13 µg/L to 5.75 µg/L. Fig. 4B-4F, 4H. In-situ measurements from Ferrybox vessels: 
B. Recorded on 2014.07.04 overlaid on a microalgae colony detected in the AVHRR image captured on 2014.07.04. The 
PC fluorescence values range from 0.10 to 0.197. c. Recorded South of Gotland on 2014.07.07 overlaid on a microalgae 
colony detected in the AVHRR image captured on 2014.07.07. The PC fluorescence values range from 0.078 to 0.286. 
d. Recorded in the period between 2014.07.08 and 2014.07.09 overlaid on a microalgae colony detected in the AVHRR 
image captured on 2014.07.09. The PC fluorescence values range from 0.09 to 0.161. e. Recorded in the period between 
2014.07.21 and 2014.07.22 overlaid on a microalgae colony detected in the AVHRR image captured on 2014.07.21. The 
PC fluorescence values range from 0.12 to 0.194. F. Recorded on 2014.07.22 overlaid on a microalgae colony detected 
in the AVHRR image captured on 2014.07.22. The PC fluorescence values range from 0.12 to 0.194. H. Recorded in the 
period between 2014.08.15 and 2014.08.16 overlaid on a microalgae colony detected in the AVHRR image captured on 
2014.08.15. The PC fluorescence values range from 0.11 to 0.135
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NDVI values, while lower negative NDVI values 
are represented by hues of orange, yellow and blue 
respectively. This functionality is particularly useful 
when detailed analysis of particular algae colonies 
is required, for example when investigating whether 
the outline of a detected colony is a product of cloud 
masking. As it can be seen (Fig. 4H), the applica-
tion of this colour scheme to the colony detected on 
15.08.2014 not only allows for better contrast against 
the reference Alg@line data, but also reveals a sharp 
rise of NDVI values on the borders of the microalgae 
colony. The sharp change in NDVI values is an arte-
fact caused by thin cirrus clouds which were not com-
pletely removed on the land&cloud masking stage.

During the presented research it was discovered 
that although the values of negative NDVI for images 
captured in similar time periods and environmental 
conditions (sunny days with clear skies) can vary by 
more than 18%, which may be observed eg. on im-
ages captured on 21.07.2014 and 22.07.2014 (Fig. 4E 
and 4F), the frequency distribution of NDVI remains 
largely similar. This may be analysed by examining 
eg. the negative NDVI histograms for satellite images 
captured on 07.07.2014 and 09.07.2014 (Fig. 5). 

The histograms on both images share a similar 
shape, however the histogram mode on the left image 
is –0.208 and the smallest NDVI value is –0.303. In 
the second image, taken only two days later, the histo-
gram mode is the value of –0.217 and the smallest re-
corded value is –0.290. The situation has been found 
to be similar for the entire time series of analysed 
images. The comparison of NDVI frequency distri-
bution for water surface always reveals a unimodal 
histogram, however the characteristics of these distri-
butions (such as frequency, mean, median and mode) 
tend to differ to varying degrees. This may be further 
analysed on scatterplots of NDVI values against their 
matching PC fluorescence measurements (Fig. 6).

A comparison of microalgae bloom detection re-
sults produced by the presented method with true col-
our images from the MODIS sensor and the results of 
their classification performed by SMHI on six sample 
days with best weather conditions, chosen from the 
analysed blooming periods (Fig. 7). The first column 
of the figure contains atmospherically corrected true 
colour satellite images captured by the MODIS sen-
sor for the given date, the third column contains the 
results of their classification using the method by 
(Kahru et al. 2007) (orange colour represents micro-
algae, yellow represents subsurface blooms and grey 
marks the cloud mask) while the second column con-
tains results produced by the presented system on an 
AVHRR image that was closest in time to the MODIS 
captures.

While scenes recorded in good weather conditions 
are analysed properly by both methods, during the 
presented research it has been found that on cloudy 
days the theoretically superior temporal resolution of 
AVHRR occasionally produces practical advantages 
over MODIS. In particular, exploration of NASA 
MODIS online archives for the analysed periods re-
vealed many situations in which the Baltic Proper is 
85–95% clouded in the MODIS images. At the same 
time, images which were recorded by AVHRR sen-
sors an hour earlier (rarely an hour-two later) may 
produce significantly improved visibility of the 
same area. Such situations may be observed eg. on 
14.07.2013, 28.07.2013 and 03.07.2014.

It should be noted that past research occasionally 
employed comparisons to other types of reference 
data, such as MODIS Level 2 chlorophyll products. 
However, the analysis conducted for the purposes 
of this research revealed that the overly aggressive 
atmospheric correction applied by MODIS Level 
2 processing algorithms often removes the high-
est chlorophyll accumulations, making the products  

Fig. 5 Negative NDVI frequency distribution for AVHRR images captured on 07.07.2014 11:25 UTC (left) and 09.07.2014 
11:03 UTC (right)
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unsuitable for reference comparisons. This also means 
that the MODIS atmospheric correction algorithms 
have not been improved since (Reinart, Kutser 2006) 
documented this issue nearly a decade ago.

dIScuSSIOn

The proposed method has proven to properly de-
tect surface colonies of harmful microalgae such as 
cyanobacteria. The presented results (see Fig. 3 and 
Fig. 4) indicate that the microalgae spatial concentra-
tions detected using the proposed method in general 

correspond well to higher than average PC floures-
cence levels, as recorded by the Ferrybox vessels. 
In most cases the appearance of dense clouds makes 
it impossible to observe the relationship of PC fluo-
rescence levels to the NDVI values along the entire 
vessel transect, however the good weather conditions 
on 21.07.2013 (see Fig. 3D), 07.07.2014 (see Fig. 
4C), 09.07.2014 (see Fig. 4D), 21.07.2014 (see Fig. 
4E) and 15.08.2014 (see Fig. 4H) indicate a possi-
ble correlation between the value of negative NDVI 
and the density of detected microalgae colony. While 
the change in PC and NDVI values of those scenes 

Fig. 6A-6F Scatterplot of NDVI values obtained from AVHRR image against corresponding in-situ PC fluorescence 
measurements. A. Recorded on 21.07.2013. B. Recorded on 07.07.2014. c. Recorded on 09.07.2014. d. Recorded on 
16.07.2014. e. Recorded on 21.07.2014. F. Recorded on 15.08.2014
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Fig. 7 Comparison of the obtained AVHRR-based microalgae detection results (centre) with algae situation analysis 
by SMHI performed on MODIS data (right) and a true-colour MODIS image (left). Variation in algae accumulation is 
depicted by colour intensity. In SMHI images microalgae are represented with orange colour, while yellow represents 
subsurface blooms
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generally approaches a linear characteristic (see Fig. 
5), unfortunately the high variance in NDVI values 
obtained from consecutive images does not allow to 
apply the presented method for estimation of quanti-
tative values of microalgae colony density. It should 
be noted, however, that the comparison of obtained 
results with in-situ Alg@line measurements has not 
revealed any false positives. As it can be seen eg. on 
01.08.2013 (see Fig. 3G), the lack of detected micro-
algae concentrations south of Oland correlates with 
very low recorded PC fluorescence (average value of 
0.05).

As far as comparisons to other sources of refer-
ence data are concerned, it must be said that despite 
the large number of available stations, the number of 
actual in-situ measurements provided by the ICES 
HELCOM stations for the analysed area and time pe-
riod was relatively small. Even including the meas-
urements made in the same week only allowed to 
match a maximum of seven stations to any given im-
age. This being said, although the station locations 
rarely directly overlap with detected microalgae colo-
nies, they all show higher than average chlorophyll-a 
concentration in the area of the identified blooms.

The comparison of results produced by the pro-
posed method with those obtained with the only al-
ternative remote sensing method of Baltic Sea algae 
detection (see Fig. 7) reveals that the microalgae col-
onies identified by both methods are similar in shape 
and extent. Also, the extent of the algal bloom which 
may be discerned in the true-colour satellite images 
is similar or larger than the areas identified by either 
method. This is likely due to the aggressiveness of ap-
plied cloud screening algorithms, as close inspection 
suggests that the areas in question (eg. South-Western 
part of the satellite image from 07.07.2013 or the cen-
tral area of the satellite image from 25.07.2014) may 
contain a thin semi-transparent cloud layer which 
could influence the accuracy of detecting underlying 
algal blooms. It should also be noted that because the 
time difference between images produced by MODIS 
and AVHRR varies between twenty five minutes and 
three hours, some of the differences observed be-
tween the images may also be caused by a variance 
in cloud cover.

The differences in results obtained by the present-
ed system and the SMHI service may be caused by 
several factors. First of all, the higher spectral resolu-
tion of the MODIS sensor has enabled SMHI to iden-
tify subsurface blooms by analysing water column 
scattering in the 551 nm band. Thus the SMHI images 
differentiate detected microalgae into floating (repre-
sented by orange colour) and submerged (coloured in 
yellow). Other differences may be caused by a vari-
ance in sensitivity of both algorithms. For example, 
examination of reference true colour MODIS images 

(see Fig. 7) suggests that certain areas which were 
classified as “clean” by the SMHI method (eg.  South 
of Gotland on 10.07.2014 or North of Bornholm on 
25.07.2014) do contain some amounts of floating 
organisms as indicated by results obtained via the 
presented algorithm, while some other cases (South 
of Bornholm on 07.07.2014) show an opposite situa-
tion. However, these differences may also be caused 
by the lack of atmospheric correction in the AVHRR 
images, overly aggressive atmospheric correction pa-
rameters applied to the MODIS images, or simply a 
different arrangement of opaque clouds at the time of 
image capture. 

Other differences in results obtained by the MODIS 
image classification employed by SMHI and the re-
sults produced by the presented algorithm include the 
treatment of shallow water areas such as the Vistula 
and Curonian Lagoons visible in the lower right part 
of the presented images. In particular, because shal-
low waters tend to produce higher spectral reflectance 
than open waters (which adversely affects the per-
formance of a quantitative classification algorithm), 
SMHI chose to to remove those areas from their im-
ages prior to publishing. However, it is not unknown 
for harmful algae to flourish in shallow waters. For 
instance, cyanobacteria has been known to regularly 
bloom in the Curonian Lagoon (Alexandrov 2010; 
Paldaviciene et al. 2010) while Microcystis aerugi-
nosa has also been found in water samples from the 
Vistula Lagoon (Mazur-Marzec et al. 2010). (Kutser 
et al. 2006) have shown that the general reflectance 
characteristics of harmful algae in visible and near-
infrared spectra are similar in both turbid and open 
waters. Since the presented algorithm analyses the 
frequency distribution of spectral reflectance instead 
of its value, it should be more resistant to classifica-
tion errors introduced by turbid waters. Because of 
this, coastal water areas are preserved in the final im-
ages, although the accuracy of results obtained by the 
presented method for turbid waters requires further 
research.

cOncluSIOnS

The comparison of results produced by the pro-
posed Baltic Sea microalgae detection method to 
in-situ measurements obtained during the blooming 
seasons of 2013 and 2014 suggests that low negative 
values of normalized difference in reflectance be-
tween the visible and near-infrared spectral bands are 
correlated with elevated PC fluorescence levels. The 
results also indicate that the products of the proposed 
algorithm are comparable to those obtained from the 
MODIS sensor, which provides higher spectral and 
temporal resolution but lower availability. The con-
ducted analysis was automated within a dedicated GIS 
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for operational Web-based analysis and visualization 
of processed satellite data in a geographical context. 
By operating on AVHRR data obtained directly from 
a satellite ground station, the presented solution pro-
vides an integrated and cost-effective means of con-
tinuous monitoring of the Baltic Sea, while ensuring 
the highest availability of remote sensing data as well 
as independence from third-party services. As a con-
sequence, the integration of the algorithm for unsu-
pervised data classification with operational software 
for data analysis and dissemination of results consti-
tutes an automated tool for detection and monitoring 
of microalgae blooms in marine environments.

AcknOwledGeMentS

The author would like to thank the referees for 
their invaluable suggestions and recommendations. 
The presented reference algae detection results based 
on the MODIS sensor are reproduced with permission 
from the Swedish Meteorological and Hydrological 
Institute. The presented reference in-situ measure-
ments were performed in the scope of the FerryScope 
project (ferryscope.org). The reference MODIS im-
ages have been obtained from the NASA OceanColor 
online repository (http://oceancolor.gsfc.nasa.gov).

ReFeRenceS

Ahn, Y.-H., Bricaud, A., Morel, A., 1992. Light backscat-
tering efficiency and related properties of some phyto-
plankters. Deep-Sea Research 39, 1835–1855.

Aleksandrov, S. V., 2010. Biological production and eutro-
phication of Baltic Sea estuarine ecosystems: the Curo-
nian and Vistula Lagoons. Marine Pollution Bulletin 
61 (4), 205–210.

Andersson, L., 2014. Cruise report from R/V Aranda week 
32, 2014. Swedish Meteorological and Hydrological 
Institute. Source: http://www.smhi.se/en/publications/
cruise-reports-from-the-marine-monitoring/cruise-
report-from-r-v-aranda-week-32-2014-1.77360 [Ac-
cessed on 19.04.2016].

Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., 
Kraak, M. J., MacEachren, A., Wrobel, S., 2007. Geo-
visual analytics for spatial decision support: Setting the 
research agenda. International Journal of Geographi-
cal Information Science 21 (8), 839–857.

Dekker, A.G., Malthus, T.J., Goddijn, L.M., 1992, No-
vember. Monitoring cyanobacteria in eutrophic waters 
using airborne imaging spectroscopy and multispectral 
remote sensing systems. Proceedings of Sixth Austral-
asian Remote Sensing Conference 1, 204–214

Dodds, W. K., Bouska, W.W., Eitzmann, J. L., Pilger, T. J., 
Pitts, K. L., Riley, A. J., Schloesser, J.T., Thornbrugh, 
D.J., 2009. Eutrophication of U.S. freshwaters: Analy-
sis of potential economic damages. Environmental Sci-
ence & Technology 43 (1), 12–19.

Falconer, I.R., Beresford, A.M., Runnegar, M.T., 1983. 
Evidence of liver damage by toxin from a bloom of the 
blue-green alga, Microcystis aeruginosa. The Medical 
Journal of Australia 1 (11), 511–514.

Fedosejevs, G., O’Neill, N. T., Royer, A., Teillet, P. M., 
Bokoye, A. I., McArthur, B., 2000. Aerosol optical 
depth for atmospheric correction of AVHRR compos-
ite data. Canadian Journal of Remote Sensing 26 (4), 
273–284.

FerryScope WFS data service, 2016. Finnish Environment 
Institute. Source: http://ferryscope.ymparisto.fi/Rflex/
services/RflexWFS [Accessed on 19.04.2016].

Filella, I., Penuelas, J., 1994. The red edge position and 
shape as indicators of plant chlorophyll content, bio-
mass and hydric status. International Journal of Re-
mote Sensing 15 (7), 1459–1470.

Glibert, P.M., Anderson, D.M., Gentien, P., Graneli, E., 
Sellner, K.G., 2005. The global, complex phenomena of 
harmful algal blooms. Oceanography 18 (2), 136–147.

Gower, J., King, S., Borstad, G., Brown, G., 2005. Detec-
tion of intense plankton blooms using the 709 nm band 
of the MERIS imaging spectrometer. International 
Journal of Remote Sensing 26 (9), 2005–2012.

Havens, K. E., 2007. Cyanobacteria blooms: Effects on 
aquatic ecosystems. In H. K. Hudnell (Ed.), Proceed-
ings of the Interagency, International Symposium on 
Cyanobacterial Harmful Algal Blooms (ISOC-HAB): 
State Of The Science And Research Needs. Springer, 
New York, 733–747.

Hansson, M. Hakansson, B., 2007. The Baltic Algae 
Watch System-a remote sensing application for moni-
toring cyanobacterial blooms in the Baltic Sea. Journal 
of Applied Remote Sensing 1 (1), 011507, http://doi.
org/10.1117/1.2834769

HELCOM data portal. 2016. International Council for the 
Exploration of the Sea (ICES). Source: http://ocean.ices.
dk/helcom/Helcom.aspx [Accessed on 22.04.2016]

Hu, C., Carder, K. L., Muller-Karger, F. E., 2000. Atmo-
spheric correction of SeaWiFS imagery over turbid 
coastal waters: a practical method. Remote sensing of 
Environment 74 (2), 195–206.

Hu, C., He, M. X., 2008. Origin and offshore extent of 
floating algae in Olympic sailing area. Eos, Transac-
tions American Geophysical Union 89 (33), 302–303.

Hu, C., 2009. A novel ocean color index to detect floating 
algae in the global oceans. Remote Sensing of Environ-
ment 113 (10), 2118–2129.

Hu, C., Lee, Z., Ma, R., Yu, K., Li, D., Shang, S., 2010. 
Moderate resolution imaging spectroradiometer 
(MODIS) observations of cyanobacteria blooms in 
Taihu Lake, China. Journal of Geophysical Re-
search: Oceans (1978–2012) 115 (C4), http://doi.
org/10.1029/2009JC005511

Kahru, M., Leppänen, J. M., Rud, O., 1993. Cyanobacte-
rial blooms cause heating of the sea surface. Marine 
Ecology Progress Series 101, 1–7.

Kahru, M., 1997. Using satelites to monitor large-scale 
environmental changes: a case study of cyanobacteri-



17

al blooms in the Baltic Sea. Monitoring algal blooms: 
new techniques for detecting large-scale environ-
mental changes, Springer-Verlag, Heidelberg Berlin, 
43–61.

Kahru, M., Savchuk, O. P., Elmgren, R. (2007). Satellite 
measurements of cyanobacterial bloom frequency in 
the Baltic Sea: interannual and spatial variability. Ma-
rine Ecology Progress Series 343, 15–23.

Kahru, M., Elmgren, R., 2014. Multidecadal time series of 
satellite-detected accumulations of cyanobacteria in the 
Baltic Sea. Biogeosciences 11 (13), 3619–3633.

Kaitala, S. 2016. The Alg@line system. Finnish Environ-
ment Institute. Source: http://www.finmari-infrastruc-
ture.fi/ferrybox. [Accessed on 20.04.2016]

Klapper, H., 1991. Control of eutrophication in inland wa-
ters. Ellis Horwood Ltd. pp. 1–337.

Kulawiak, M., Lubniewski, Z., 2014. SafeCity—A GIS-
based tool profiled for supporting decision making in 
urban development and infrastructure protection. Tech-
nological Forecasting and Social Change 89, 174–187, 
http://doi.org/10.1016/j.techfore.2013.08.031

Kutser, T., 2004. Quantitative detection of chlorophyll in 
cyanobacterial blooms by satellite remote sensing. Lim-
nology and Oceanography 49 (6), 2179–2189.

Kutser, T., Metsamaa, L., Strömbeck, N., Vahtmäe, E., 
2006. Monitoring cyanobacterial blooms by satellite re-
mote sensing. Estuarine, Coastal and Shelf Science 67 
(1), 303–312.

Kutser, T., 2009. Passive optical remote sensing of cy-
anobacteria and other intense phytoplankton blooms 
in coastal and inland waters. International Journal of 
Remote Sensing 30 (17), 4401–4425.

Lignell, R., 1993. Effect of vertical cycling on photosyn-
thesis during the annual algal succession in the north-
ern Baltic. Hydrobiologia 254 (3), 159–167.

Mazur-Marzec, H., Browarczyk-Matusiak, G., Forycka, K., 
Kobos, J., Plinski, M., 2010. Morphological, genetic, 
chemical and ecophysiological characterisation of two 
Microcystis aeruginosa isolates from the Vistula La-
goon, southern Baltic. Oceanologia 52 (1), 127–146.

Metsamaa, L., Kutser, T., Strombeck, N., 2006. Recog-
nising cyanobacterial blooms based on their optical 
signature: a modelling study. Boreal Environment Re-
search 11 (6), 493–506.

Moszynski, M., Kulawiak, M., Chybicki, A., Bruniecki, 
K., Bielinski, T., Lubniewski, Z., Stepnowski, A., 
2015. Innovative Web-based Geographic Information 
System for Municipal Areas and Coastal Zone Security 
and Threat Monitoring Using EO Satellite Data. Ma-
rine Geodesy 38 (3), 203–224, http://doi.org/10.1080/0
1490419.2014.969459

Okin, G. S., Gu, J., 2015. The impact of atmospheric con-
ditions and instrument noise on atmospheric correction 
and spectral mixture analysis of multispectral imagery. 
Remote Sensing of Environment 164, 130–141.

Oyama, Y., Matsushita, B., Fukushima, T., 2014. Distin-
guishing surface cyanobacterial blooms and aquatic 
macrophytes using Landsat/TM and ETM+ shortwave 

infrared bands. Remote Sensing of Environment 157, 
35–47.

Paldaviciene, A., Mazur-Marzec, H., Razinkovas, A., 2009. 
Toxic cyanobacteria blooms in the Lithuanian part of 
the Curonian Lagoon. Oceanologia 51 (2), 203–216.

Pitois, S., Jackson, M. H., Wood, B. J. B., 2000. Problems 
associated with the presence of cyanobacteria in rec-
reational and drinking waters. International Journal of 
Environmental Health Research 10 (3), 203–218.

Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. 
L., Soyeux, E. (2008). Hyperspectral remote sensing 
of cyanobacteria in turbid productive water using opti-
cally active pigments, chlorophyll a and phycocyanin. 
Remote Sensing of Environment 112 (11), 4009–4019.

Reinart, A., Kutser, T., 2006. Comparison of different sat-
ellite sensors in detecting cyanobacterial bloom events 
in the Baltic Sea. Remote Sensing of Environment 102 
(1), 74–85.

Roy, D. P., Qin, Y., Kovalskyy, V., Vermote, E. F., Ju, J., 
Egorov, A., Hansen, M. C., Kommareddy, I. Yan, L., 
2014. Conterminous United States demonstration and 
characterization of MODIS-based Landsat ETM+ at-
mospheric correction. Remote Sensing of Environment 
140, 433–449.

Rouse, J.W., Jr., Haas, R. H., Deering, D. W., Harlan, J. C. 
(1974). Monitoring the vernal advancement and retrogra-
dation (greenwave effect) of natural vegetation. Texas A 
& M University, Remote Sensing Center, pp. 1–10.

Ruiz-Verdú, A., Simis, S.G., de Hoyos, C., Gons, H.J., Pe-
ña-Martínez, R., 2008. An evaluation of algorithms for 
the remote sensing of cyanobacterial biomass. Remote 
Sensing of Environment 112 (11), 3996–4008.

Sivonen, K., Kononen, K., Carmichael, W. W., Dahlem, A. 
M., Rinehart, K. L., Kiviranta, J., Niemela, S. I., 1989. 
Occurrence of the hepatotoxic cyanobacterium Nodu-
laria spumigena in the Baltic Sea and structure of the 
toxin. Applied and Environmental Microbiology 55 (8), 
1990–1995.

Sobrino, J.A., Raissouni, N. 2000. Toward remote sensing 
methods for land cover dynamic monitoring: applica-
tion to Morocco. International Journal of Remote Sens-
ing 21 (2), 353–366.

SMHI BAWS. 2016. Swedish Meteorological and Hydro-
logical Institute. Source: http://www.smhi.se/en/weath-
er/sweden-weather/1.11631 [Accessed on 20.04.2016]

SYKE Algal Situation service. 2016. Finnish Environment 
Institute. Source: http://www.environment.fi/algalsitu-
ation [Accessed on 20.04.2016]

Stewart, I., Webb, P. M., Schluter, P. J., Fleming, L. E., 
Burns, J. W., Gantar, M., Backer, L.C. Shaw, G. R., 
2006. Epidemiology of recreational exposure to fresh-
water cyanobacteria–an international prospective 
cohort study. BMC Public Health 6 (1), http://doi.
org/10.1186/1471-2458-6-93

Tanre, D., Holben, B. T., Kaufman, Y. J., 1992. Atmo-
spheric Correction Algorithm for NOAA-AVHRR 
Products: Theory and Application. IEEE Transactions 
on Geoscience and Remote Sensing 30 (2), 231–248.



18

Thell, A.-K., 2013a. Cruise report from KBV001 Posei-
don week 9, 2013. Swedish Meteorological and Hy-
drological Institute. Source: http://www.smhi.se/en/
publications/cruise-report-from-kbv001-poseidon-
week-9-2013-1.29095 [Accessed on 19.04.2016].

Thell, A.-K., 2013b. Cruise report from KBV001 Posei-
don week 25, 2013. Swedish Meteorological and Hy-
drological Institute. Source: http://www.smhi.se/en/
publications/cruise-report-from-kbv-002-triton-week-
25-2013-1.31319 [Accessed on 19.04.2016].

Thell, A.-K., 2013c. Cruise report from KBV001 Posei-
don week 29, 2013. Swedish Meteorological and Hy-
drological Institute. Source: http://www.smhi.se/en/
publications/cruise-report-from-kbv-002-triton-week-
29-2013-1.31898 [Accessed on 19.04.2016].

Thell, A.-K., 2014. Cruise report from R/V Aranda week 
28, 2014. Swedish Meteorological and Hydrological 
Institute. Source: http://www.smhi.se/en/publications/
cruise-reports-from-the-marine-monitoring/cruise-
report-from-r-v-aranda-week-28-2014-1.77358 [Ac-
cessed on 19.04.2016].

Trishchenko, A. P., Hwang, B., Li, Z., 2002. Atmospheric 
correction of satellite signal in solar domain: impact of 
improved molecular spectroscopy. Twelfth ARM Science 
Team Meeting Proceedings, St. Petersburg, Florida, 1–7.

USGS AVHRR. 2008. U.S. Geological Survey. Source: 
http://edc2.usgs.gov/1KM/avhrr_sensor.php [Accessed 
on 20.04.2016]

Vermote, E. F., El Saleous, N., Roger, J. C., 1995. Opera-
tional atmospheric correction of AVHRR visible and 
near-infrared data. Atmospheric Sensing and Model-
ling, 141–149, http://doi.org/10.1117/12.198596

Vermote, E. F., El Saleous, N. Z., Justice, C. O., 2002. At-
mospheric correction of MODIS data in the visible to 
middle infrared: first results. Remote Sensing of Envi-
ronment 83 (1), 97–111.

Wang, M., Shi, W., 2007. The NIR-SWIR combined at-
mospheric correction approach for MODIS ocean 
color data processing. Optics Express 15 (24), 15722–
15733.

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. 
A., Tester, P. A., Dyble, J., Fahnenstiel, G. L. (2008). 
Relating spectral shape to cyanobacterial blooms in the 
Laurentian Great Lakes. International Journal of Re-
mote Sensing 29 (12), 3665–3672.

Zhao, D., Jiang, H., Yang, T., Cai, Y., Xu, D., An, S., 2012. 
Remote sensing of aquatic vegetation distribution in 
Taihu Lake using an improved classification tree with 
modified thresholds. Journal of Environmental Man-
agement 95 (1), 98–107.


