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Abstract  The distribution of benthic invertebrates is one of the key parameters for the marine spatial planning 
and management, however traditionally the data on benthic invertebrates are based on point sampling. Recently 
statistical methods of predictive modelling are used to create maps of species distribution, nevertheless, no com-
parative analysis of different modelling methods has been yet performed  in the Baltic Sea region. In this study 
the occurrence and biomass distribution of 23 benthic species in the southeastern Baltic Sea were modelled. A 
comparison of the following predictive modelling methods was performed: random forests (RF), generalized 
additive models (GAM), multivariate adaptive regression splines (MARS) and maximum entropy (MaxEnt). 
In order to assess the consistency of the methods, 100 iterations with different train/test datasets were made 
for each of them. Random forests achieved the highest predictive performance for both species occurrence and 
biomass distribution models; also it was the most consistent for different iterations. Predictive performance of 
GAMs and MARS followed RF, whereas MaxEnt accurately predicted occurrence only for the species with a 
relatively low distribution range.
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INTRODUCTION

Marine spatial planning and management require 
spatial information on environmental characteristics 
(Foley et al. 2010; Allnutt et al. 2011, Guerry et al. 
2012). However, they are usually based on the point 
data, especially for the distribution of marine biota. 
Sampling sites rarely are dense and evenly distributed 
within study area to use simple interpolation techniques 
for the creation of spatial maps (Li, Heap 2008). Species 
distribution models (SDMs) relate the occurrence or 
abundance of organisms with the environment factors 
that limit their distribution and can predict the species 
potential habitat using environmental data. SDMs 
gained an increasing attention in recent years followed 
by many applications in aquatic ecology (Robinson 
et al. 2011) from global predictions of the seafloor 
biomass (Wei et al. 2010) to species distributions at 
regional scale (Gogina, Zettler 2010; Vincenzi et al. 

2011) or even mapping ecosystem services (Šiaulys 
et al. 2012). 

Various modelling techniques are used for model-
ling species distribution (Guisan, Zimmerman 2000; 
Elith et al. 2006). However, only few SDMs tech-
niques have been applied in the Baltic Sea, especially, 
modelling the distribution of benthic invertebrates 
(Carlström et al. 2010; Gogina, Zettler 2010; Šiaulys 
et al. 2012). The studies used different SDMs methods 
and no comparison of methods has been performed. 
Therefore, in this study a comparison of four modelling 
techniques for the prediction of 23 benthic invertebrate 
species in the south-eastern part of the Baltic Sea has 
been performed: generalized additive models (GAM), 
multivariate adaptive regression splines (MARS), 
maximum entropy (MaxEnt) and random forests (RF). 
Moreover, the variance of model performance was 
estimated by iterating random data splitting into train 
and test datasets. Different SDMs were proposed by 
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Kuhn et al. (2008) and Reiss et al. (2011), however, the 
most suited model can depend on the data traits (Elith 
2011), such as species distribution range or prevalence 
of species occurrence (Manel et al. 2001). The later 
effects have been tested in this study. 

MATERIAL AND METHODS

Environmental predictors and field data

This study was carried out in the Lithuanian 
Exclusive Economic Zone, southeastern Baltic Sea 
(Fig. 1). Of the available environmental predictors 
known to be important for the distribution of benthic 
invertebrates (Olenin 1997; Bučas et al. 2009; Gogina, 
Zettler 2010; Reiss et al. 2011), eight were used for 

Fig. 1  Location of the sampling sites in Lithuanian waters in 1998–2010. 
Compiled by A. Šiaulys, 2012 (bathymetry acquired after L. Ž. Gelumbauskaitė 2009).

1997; Gelumbauskaitė et al. 1999; Bitinas et al. 2004). 
Sediments were classified into four types: boulders, 
cobbles/gravel, sand and silt (Wentworth 1922). The 
wind wave orbital velocity data layer was derived using 
SWAN model (Booij et al. 1999) based on 2008–2009 
wind data. National marine monitoring data was used 
to derive Secchi depth and thermocline layers (MRC, 
unpublished 1998–2006). The mean annual minimum 
near-bottom oxygen concentration (2000-2006) and 
bottom current velocity layers were derived from da-
tasets produced by BALANCE project (Hansen et al. 
2007; Bendtsen et al. 2007).

The dataset of the study consists of 640 benthic 
samples taken at 224 sampling sites during 1998–2010 
(Fig. 1). Soft-bottom samples were taken with a 
Van-Veen grab, while hard bottoms were sampled by 

SCUBA divers with 0.20 
x 0.20 m frame. These 
samples were taken and 
treated following stand-
ard guidelines for bot-
tom invertebrate sampling 
(HELCOM 1988).

Modelling techniques

Generalized additive
models (GAM)

GAMs are semi-parametric 
extensions of generalized 
linear models with the 
assumption that  the 
functions are additive and 
that the components are 
smooth. This method deals 
well with the highly non-
linear and non-monotonic 
relationships between 
the set of explanatory 
and response variables 
(Guisan et al. 2002). 
Model selection was based 
on penalized regression 

splines with default gamma-values and a maximum four 
degrees of freedom for continuous predictor variables 
in order to maintain ecologically interpretable models 
(Wood, Augustin 2002). The “mgcv” 1.7-9 package 
(Wood 2006) within R environment was used for 
occurrence and biomass distribution models.

Multivariate adaptive regression splines (MARS)

MARS algorithm is a nonparametric method for 
multiple regression, which uses adaptively selected 
spline functions (Hansen, Kooperberg 2002) developed 
by Friedman (1991). MARS is based on linear 
relationships, however it identifies and estimates a 
model which coefficients differ depending on the level 
of the predictor variable (Reiss et al. 2011). Models 
were built using the GLM approach and specified to 

the models of species occurrence and biomass distri-
bution: sediment types, Secchi depth, minimum near-
bottom oxygen concentration, near-bottom current 
velocity, wave generated orbital near-bottom velocity, 
slope and roughness of the seabed, areas of above and 
below the thermocline. Quantitative environmental 
parameters were tested for collinearity and predictors 
were removed from models if the variance inflation 
factors were > 3 (Quinn, Keough 2002). The layers 
of sediments, slope and roughness were derived from 
geological and bathymetrical charts (1Repečka et al. 

1 Repečka, M., Gelumbauskaitė, Ž., Grigelis, A., Šimkevičius, P., 
Radzevičius, R., Monkevičius, A., Bubinas, A., Kasperovičienė, 
J., Gadeikis, S., 1997. National marine geological mapping at a 
scale of 1:50 000, Klaipėda–Šventoji water area, Object No. I. 
Manuscript, Lietuvos geologijos tarnyba, Lietuvos geologijos 
institutas, Vilnius, 227 pp. [In Lithuanian].
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include first order interactions, where significant. Both 
occurrence and biomass distribution models were built 
using the “earth” package (Milborrow 2012) under R 
environment.

Maximum entropy (MaxEnt) 

MaxEnt is a general-purpose machine learning method 
which estimates a target probability distribution by 
finding the probability distribution of maximum 
entropy and constraining the expected value of each 
environmental variable to match its empirical average 
(Phillips et al. 2006; Reiss et al. 2011). In this study 
we used MaxEnt program version 3.3.3e (Philips 
et al. 2006; Philips et al. 2008). The convergence 
threshold was set at 10−5 and the maximum number of 
iterations at 500 to allow the algorithm to get close to 
convergence (Phillips et al. 2006). Although, MaxEnt 
works well with presence-only datasets (Elith et al. 
2011), absence data was also used in MaxEnt models 
to be more consistent with other methods. MaxEnt was 
used only for modelling the occurrence probability of 
species.

Random Forests (RF)

RF is a classification and regression model developed 
by Breiman (2001) that generates multiple classification 
trees with a randomised subset of predictors (Reiss et 
al. 2011). A large number of trees are grown and the 
number of predictors used to find the best split at each 
node is a randomly chosen subset of the total number of 
predictors (Prasad et al. 2006). In this study the number 
of trees was set to 1000, the number of variables 
randomly selected at each node and minimum node size 
were set to default values. The “randomForest 4.6-2” 
package (Liaw, Wiener 2002) within the R environment 
was used for predictions of presence probability and 
biomass distribution of benthic species.

Predictive performance, model variation 
and effects of data traits 

Predictive performance of the species occurrence 
models was estimated by area under the receiver 
operating characteristic curve (AUC) measures. 
The AUC values range between 0 and 1. According 
Hosmer and Lemeshow (2000) “excellent” prediction 
performance is achieved when AUC > 0.9, “good” 
performance – AUC 0.7-0.9, “poor” performance – 
AUC < 0.7. If AUC is ≤ 0.5 then predictions are no 
better than random. For biomass distribution models 
two measures were estimated: root mean square error 
normalized by range (NRMSE) and coefficient of 
determination (R2).

The initial dataset was split into train set used for 
model build-up (70% of data) and test set used for 
validation (rest 30% of data) ensuring that species 

prevalence (the ratio between sites where a particular 
species is present and total number of sites) would 
be in equal proportions in train and test datasets. The 
variance of model performance was assessed by mean 
values of 100 iterations of splits for each species. 
Variation is expressed by the coefficient of variation 
CVAUC for occurrence models and CVNRMSE and CVR

2 
for biomass distribution models. 

The effect of data traits, species prevalence and 
distribution range, on both predictive performance and 
model variation were tested using Pearson’s correlation 
between AUC, NRMSE, R2. The species distribution 
range was determined for each species using convex 
hull algorithm in Quantum GIS 1.7.4 (Quantum GIS 
Development Team, 2010). The species prevalence and 
distribution range significantly correlated (r = 0.70, p 
< 0.01), therefore the effect of the species prevalence 
was tested on the predictive performance of models. 

RESULTS

Performance of models

All four methods on average achieved “good” 
predictive performance for occurrence models (Fig. 2). 
The highest performance was achieved by RF (AUC = 
0.87 ± 0.06), followed by GAM (AUC = 0.84 ± 0.06), 
MARS (AUC = 0.80 ± 0.06) and MaxEnt (AUC = 
0.77 ± 0.11). RF models were also the most consistent 
ranging from “good” to “excellent” performance 
(AUC = 0.78–0.96), closely followed by GAM (AUC 
= 0.74–0.95) and MARS (AUC = 0.70–0.95), while 
MaxEnt (AUC = 0.56–0.93) had six cases of “poor” 
predictive performance. According to coefficients of 
variation of AUC the most consistent method was again 
RF (CVAUC = 0.05±0.02), closely followed by MaxEnt 
(CVAUC = 0.06±0.02) and GAM (CVAUC = 0.06±0.03), 
while MARS (CVAUC = 0.09±0.04) varied the most.

Fig. 3 indicates that the mean prediction error of all 
three methods for the biomass distribution was very 
similar (NRMSE = 0.08± 0.04) among the methods. 
According to the coefficient of determination (R2) the 
best mean performance was achieved by RF (R2 = 0.32 
± 0.19), followed by MARS (R2 = 0.13 ± 0.14) and 
GAM (R2 = 0.12 ± 0.12). 

As shown in Fig. 4 the R2 of biomass distribu-
tion models by RF was the most consistent (CVR

2 = 
0.45±0.29), but with the highest variance of NRMSE 
(CVNRMSE = 0.80±0.39). GAMs were relatively consist-
ent according to R2 (CVR

2 = 0.88±0.41) and NRMSE 
(CVNRMSE = 0.52±0.25), while the models of MARS 
were consistent in respect of NRMSE (CVNRMSE = 
0.51±0.23), but with the high variance in R2 (CVR

2 = 
1.30±0.77).According to AUC, all methods correlated 
with each other (r = 0.66-0.90, p < 0.01), except for a 
weak correlation between MARS and MaxEnt (Table 
1). Very strong correlations were estimated among 
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Fig. 2  Performance of four predictive methods for modelling 
of the occurrence of benthic invertebrates according AUC 
(area under the curve) values and coefficients of variation 
of AUC during 100 of iterations. Compiled by A. Šiaulys 
and M. Bučas, 2012.

Fig. 3  Performance of three predictive methods for mo-
delling of the distribution of benthic invertebrates biomass 
according NRMSE (root mean square error normalized by 
range) and R2 (coefficient of determination) values. Com-
piled by A. Šiaulys and M. Bučas, 2012.

Fig. 4  Coefficients of variation of NRMSE (root mean square error normalized by range) and R2 (coefficient of determi-
nation) of four predictive modelling methods during 100 iterations. Compiled by A. Šiaulys and M. Bučas, 2012.

the methods in respect of NRMSE (r = 0.92–0.97, p < 
0.01), and strong to very strong correlation in respect 
of R2 (r = 0.79–0.93, p < 0.01). 

The correlation between the prevalence and AUC 
values were negative for all methods, whereas correla-
tion between prevalence and both NRMSE and R2 were 
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Table 1  A correlation matrix of the performance of four predictive modelling methods and 
species prevalence. Compiled by A. Šiaulys, 2012.

AUC NRMSE R2

GAM MARS RF MaxEnt GAM MARS RF GAM MARS RF
GAM 1  1  1
MARS 0.76 1  0.97 1  0.93 1

RF 0.90 0.76 1  0.92 0.92 1 0.81 0.79 1
MaxEnt 0.66 0.39 0.75 1   

Prevalence -0.41 -0.13 -0.51 -0.92 0.47 0.45 0.45 0.15 0.23 0.20

AUC – area under the curve, NRMSE – root mean square error normalized by range, R2 – 
coefficient of determination.

Table 2  Correlation matrix of the variation of performance of four predictive modelling 
methods and species prevalence. Compiled by A. Šiaulys, 2012.

AUC NRMSE R2

CVGAM CVMARS CVRF CVMaxEnt CVGAM CVMARS CVRF CVGAM CVMARS CVRF

CVGAM 1    1  1

CVMARS 0.77 1  0.95 1  0.70 1

CVRF 0.76 0.62 1  0.71 0.73 1 0.59 0.82 1

CVMaxEnt 0.34 0.12 0.68 1  

Prevalence -0.17 -0.46 -0.01 0.09 -0.41 -0.43 -0.51 -0.22 -0.48 -0.46
AUC – area under the curve, NRMSE – root mean square error normalized by range, R2 – 
coefficient of determination.

always positive (Table 1). This indicates that methods 
tend to predict occurrence better with less occasions of 
species presence. While this effect was very weak for 
MARS (r = -0.13, p > 0.05) and moderate for GAM and 
RF (r = -0.41 and r = -0.51 respectively, p < 0.05), Max-
Ent models had a very strong negative correlation with 
prevalence. On the contrary, performance of biomass 
distribution models tend to get better with increasing 
prevalence, however this effect was moderate in case 
of NRMSE and only weak-very weak in case of R2.

Low to moderate negative correlations (r ≤ -0.51) 
were determined between prevalence and coefficients 
of variation of models except MaxEnt (Table 2), 
meaning that consistency of predictions during itera-
tions increases with decreasing occasions of species 
occurrence. MARS was the most sensitive in case 
of occurrence models, whereas biomass distribution 
models showed similar results for all SDMs.

Modelling results of all 23 species are given in 
Table 3. RF models of occurrence achieved top perfor-
mance among all methods for 19 species, followed by 
GAM (six species), MARS and MaxEnt (one species 
per each). MaxEnt and MARS showed the worst per-
formance for 14 and 10 species, respectively, whereas 
for GAM and RF that was never the case. According 
coefficient of determination RF was the best in pre-
dicting biomass distribution for all species except one, 

while GAM and MARS 
had the worst predictive 
performance for 14 and 
12 species, respectively. 
Overall predictions of the 
occurrence were excellent 
(AUC > 0.9) for eight spe-
cies: Halicryptus spinu-
losus, Mytilus edulis, Sa-
duria entomon, Fabricia 
sabela, Idotea balthica, 
Jaera albifrons, Ostra-
coda, Pontoporeia affinis 
and Theodoxus fluviatilis, 
however only ostracods 
were predicted excellent 
by all four methods. The 
most accurate predictions 
for the distribution of bio-
mass were recorded for 
Balanus improvisus, Ma-
coma balthica, M. edulis 
and S. entomon (R2 > 0.5). 

DISCUSSION

All predictive modelling 
techniques  provided 
u s e f u l  m o d e l s .  I n 
accordance with other 
studies (Gislason et al. 

2006; Cutler et al. 2007; Collin et al. 2011), in our 
case the machine learning RF method achieved the 
best predictive performance on both occurrence and 
biomass data. However the predictive performance of 
models by GAM, MARS and MaxEnt was close to 
RF. The performance of RF models were relatively 
“good” (AUC > 0.8) for most of the species, while 
other modelling methods, especially MaxEnt, were 
“good” only for few species. The MaxEnt case can 
be explained by a very strong negative correlation 
between AUC and prevalence (Table 3), indicating that 
MaxEnt was relatively inaccurate for the widespread 
species (AUC = 0.56–0.61, prevalence ≥ 0.68), such 
as bivalve Macoma balthica and polychaete worms: 
Marenzelleria neglecta, Hediste diversicolor and 
Pygospio elegans. On the other hand the predictive 
performance of MaxEnt and other methods were 
relatively good for less dispersed species (AUC = 
0.90–0.93, prevalence ≤ 0.14), such as coastal hard-
bottom associated Fabricia sabela, Idotea balthica 
and Theodoxus fluviatilis. For the biomass models RF 
was superior over GAM and MARS. In most of the 
RF models the coefficient of determination explained 
up to 40% of variance more than the GAM and MARS 
models. This was most notable in Mya arenaria and 
Bathyporeia pilosa models, where the coefficients of 
determination of GAM and MARS were < 10%, while 
RF achieved > 40%. 
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Table 3  Validation results of four predictive modelling methods for occurrence and biomass distribution of 23 benthic 
species in Lithuanian economic zone. Compiled by A. Šiaulys, 2012.

Phylum, class, 
order, family Species, taxa 

GAM MARS RF MaxEnt
Prev.

AUC NRMSE R2 AUC NRMSE R2 AUC NRMSE R2 AUC

Priapulida Halicryptus spinulosus 0.89 0.08 0.19 0.88 0.06 0.32 0.91 0.06 0.46 0.79 0.33

Polychaeta

Nereidae Hediste diversicolor 0.76 0.15 0.08 0.79 0.15 0.11 0.79 0.15 0.41 0.60 0.68

Polynoidae Harmothoe sarsi 0.80 0.07 0.01 0.74 0.08 0.01 0.79 0.06 0.14 0.75 0.19

Sabellariidae Fabricia sabela 0.92 0.07 0.07 0.84 0.08 0.11 0.95 0.06 0.19 0.91 0.10

Spionidae Marenzelleria neglecta 0.80 0.10 0.15 0.77 0.10 0.12 0.81 0.10 0.28 0.56 0.81

Pygospio elegans 0.83 0.08 0.01 0.79 0.08 0.01 0.80 0.08 0.14 0.61 0.69

Streblospio shrubsolii 0.87 0.05 0.03 0.78 0.05 0.03 0.87 0.06 0.11 0.83 0.07

Oligochaeta Oligochaeta undet. 0.77 0.04 0.05 0.77 0.05 0.01 0.82 0.04 0.08 0.65 0.59

Crustacea

Amphipoda Bathyporeia pilosa 0.82 0.05 0.06 0.79 0.05 0.02 0.86 0.04 0.46 0.79 0.22

Corophium volutator 0.84 0.10 0.07 0.84 0.09 0.17 0.86 0.04 0.25 0.73 0.39

Gammarus spp. 0.81 0.09 0.13 0.76 0.08 0.15 0.83 0.09 0.45 0.75 0.29

Pontoporeia affinis 0.88 0.08 0.06 0.83 0.09 0.03 0.90 0.04 0.18 0.80 0.15

Cirripediae Balanus improvisus 0.89 0.06 0.31 0.81 0.05 0.30 0.89 0.05 0.55 0.84 0.22

Isopoda Idotea balthica 0.79 0.07 0.06 0.77 0.07 0.01 0.87 0.06 0.04 0.93 0.03

Jaera albifrons 0.93 0.06 0.10 0.78 0.06 0.03 0.93 0.04 0.36 0.88 0.15

Saduria entomon 0.92 0.14 0.32 0.92 0.15 0.35 0.94 0.15 0.71 0.83 0.31

Ostracoda Ostracoda undet. 0.95 0.06 0.15 0.95 0.07 0.07 0.96 0.05 0.38 0.92 0.10

Gastropoda

Hydrobiidae Hydrobia sp. 0.76 0.09 0.02 0.75 0.09 0.04 0.78 0.09 0.13 0.70 0.38

Neritidae Theodoxus fluviatilis 0.93 0.07 0.09 0.82 0.06 0.01 0.91 0.05 0.23 0.90 0.14

Bivalvia

Cardiidae Cerastoderma lamarcki 0.74 0.07 0.06 0.70 0.06 0.07 0.80 0.05 0.17 0.73 0.13

Myidae Mya arenaria 0.82 0.07 0.02 0.80 0.07 0.06 0.89 0.05 0.43 0.69 0.48

Mytildae Mytilus edulis 0.86 0.15 0.38 0.80 0.15 0.42 0.90 0.17 0.55 0.82 0.25

Tellinidae Macoma balthica 0.84 0.15 0.40 0.80 0.15 0.43 0.85 0.15 0.63 0.59 0.76

AUC – area under the curve, NRMSE – root mean square error normalized by range, R2 – coefficient of determination, 
Prev. – prevalence.

Our study showed that the splitting of the data into 
train and test datasets can play a significant role on the 
performance of the models. Depending on how the data 
was split the models performed from “poor” (AUC < 
0.7) to “perfect” (AUC > 0.9). In this respect the most 
sensitive method was MARS for both the occurrence 
and biomass distribution models. For example, on the 
average of 100 iterations, the models of M. balthica 
achieved a “good” prediction performance, but itera-
tions ranged from the accuracy of a coin-flip to perfect 
(AUC = 0.56–0.94). The most consistent method was 
again RF in respect of AUC and R2. 

In this study the same set of predictors was used 
for all the species. This was done to be more consist-
ent when comparing different modelling techniques. 
However, because these species are associated to dif-
ferent environments, due to a limited and rigid set of 
parameters some of them were modelled inaccurately. 

For example a model performance of small isopods I. 
balthica should increase significantly if the data on 
the macroalgae, to which they are associated (Vetter et 
al. 1999), would be available and included. Similarly, 
the data on the total organic content is very important 
(Gogina, Zettler 2010), especially for predictions of 
deposit feeders such as polychaetes H. diversicolor, 
M. neglecta and P. elegans (Olenin 1997). On the 
other hand uneven distribution of sampling sites can 
result in different spatial accuracy (Šiaulys et al. 2012), 
thus in our case more dense sampling in deeper areas 
should provide better models for widespread and deep 
living species. However, both occurrence and biomass 
distribution models of several species were relatively 
good, i.e. M. balthica, Mytilus edulis, Saduria ento-
mon and can provide reliable spatial maps (Fig. 5) for 
further ecological studies or marine spatial planning 
and management.
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Fig. 5  Prediction graphs of Macoma balthica occurrence and biomass distribution 
modelled by different techniques: (a) generalized additive model (GAM); (b) multi-
variate adaptive regression splines (MARS); and (c) random forests (RF). Compiled 
by A. Šiaulys, 2012.

CONCLUSIONS

The RF method showed the best results in predicting 
the occurrence and biomass distribution of benthic 
invertebrates and was most consistent in relation 
to the data splitting into train and test datasets. 
Predictive performance of GAMs and MARS followed 

RF, whereas MaxEnt accurately 
predicted occurrence only for 
the species with relatively low 
distribution range. 
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