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Nitrogen (N), due its low temperature volatilization, is one of the elements most vulnerable 
to fi re. Th is eff ect depends on fi re severity, which varies depending on biophysical condi-
tions which can be heterogeneous across the landscape. Hence, fi re eff ects on N can be vari-
able. Th e aim of this study was to establish the ash total nitrogen (TN) spatial variability 
in a microplot designed in a burned area, and to test several methods in order to identify 
the most accurate one for interpolating the variable. In total, we selected four deterministic 
interpolation methods – inverse distance to a weight (IDW), with the weight of 1, 2, 3, 4 
and 5, local polynomial (LP), with the power of 1 and 2, global polynomial (GP), radial 
basis functions (RBF) – spline with tension (SPT), completely regularized spline (CRS), 
multiquadratic (MTQ), inverse multiquadratic (IMTQ) and thin plate spline (TPS) – and 
two geostatistical methods: ordinary kriging (OK) and simple kriging (SK). In total, we 
tested 15 techniques. Ash TN was negatively related to fi re severity showed a good spatial 
structure across the plot. Th e linear model was the best, which means that the variability 
of ash TN content increased in all the area of interest. Th e highest concentration of TN was 
observed in the northeast part of the plot and the lowest in the Southwest. From all test 
methods, MTQ was most accurate, and IDW5 was the worst predictor. In general, RBF and 
the geostatistical methods were most precise and IDW was less accurate, which means that 
ash TN distribution has some specifi c features and does not exhibit a small-scale variation. 
Th e distribution of the variable depends on species distribution, temperature and probably 
on vegetation moisture during fi re evolution.
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INTRODUCTION

Wildland fi res aff ect enormous extensions of forests. In a great 
majority, they result from anthropogenic activities leading 
to serious problems of land degradation and desertifi cation. 
Nevertheless, fi re is a natural element of the ecosystems. From 
the savannas, where fi re has an annual frequency, to the taigas 
where fi res can have a century of recurrence, fi re has shaped 
all earth biomes (Mataix-Solera, Cerdà, 2009). Th e most visible 
thing aft er a fi re is ash, and this residue contains the majority 
of the nutrients available for ecosystem recovery. Th e amount 
and type of nutrients depend on the temperature reached, 
species aff ected and contact time (Pereira et al., 2009a, 2010). 
Nitrogen (N) is the most limiting element in wildland ecosys-

tems (Neary et al., 2005), thus requiring special attention when 
managing fi re. Also, N is one of the most vulnerable elements 
to fi re volatilization. N volatilization starts at temperatures of 
±200 °C, and at temperatures above 500 °C all N is completely 
vaporized (DeBano et al., 1998; Neary et al., 2005). During 
fi res, temperatures could reach 900 °C in soil surface and litter, 
hence the probability of wildfi re impact on N pools and bio-
geochemical cycles is very high (DeBano, 1981).

Biophysical conditions (plant composition, distribution 
and moisture, the amount of biomass, topography, vege-
tation moisture, meteorological conditions) vary across the 
landscape. Th ese characteristics infl uence the fi re behaviour 
and eff ects. Th e diff erent characteristics of the area aff ected 
by fi re induce a complex and heterogeneous mosaic of fi re 
impacts (Viegas, 2004; Crimmins, 2005; Baeza et al., 2006; 
Maingi, Henry, 2007).
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Recently, some studies have reported that the eff ects of 
fi re on nutrient status across small distances can be highly 
variable due to the eff ects of microtopography and vegetation 
characteristics (Lorca, Úbeda, 2004; Úbeda et al., 2005; Perei-
ra, Úbeda, 2010). Th is adds a great complexity to understand-
ing the eff ects of forest fi res on the landscape. Th e high spa-
tial variability induces serious diffi  culties while estimating 
the correctly values at unsampled points. Th is estimation is 
achieved by testing diverse interpolation methods. However, 
the great availability of methods imposes a challenge but also 
off ers an opportunity to elucidate the best method for inter-
polating surfaces. Th e interpolation accuracy is assessed by 
the cross-validation method widely used in similar studies 
(Zhang, McGrath, 2004; Diodato, Ceccarelli, 2005; Bouren-
nane et al., 2006; Pereira, Úbeda, 2010).

Several studies have noted that diff erent methods can be 
more appropriate depending on the distribution of the vari-
able, plot design and the distance between sampling points 
(Erxleben et al., 2002; Robinson, Metternicht, 2006; Bouren-
nane et al., 2006; Chaplot et al., 2006). A good prediction of 
the variable allows a better understanding the eff ects fi re on 
the landscape.

Th e aim and goal of this study were the distribution and 
variability of ash total nitrogen (TN), on a microplot scale, 
of ash collected in a wildfi re which occurred in Portugal. To 
evaluate the performance of the interpolation, we tested 15 
interpolation techniques to identify the most accurate one for 
predicting TN in the ash produced aft er a wildfi re.

DATA AND METHODOLOGY

Study site, sample collection and laboratory analysis
Th e wildfi re occurred in Peninsula de Setubal, near Lisbon 
region, and aff ected ±4 ha of a forest dominated by Quercus 
suber and Pinus pinaster (Fig. 1). Th e wildfi re sprouted from 
East to West. Inside this area, we designed a 6 × 13 m micro-
plot (Fig. 2) and collected 30 ash samples. Th e coordinates 
of each sampling point were taken with the GPS. Ash sam-
ples were collected in soil surface, stored in plastic bags and 
taken to laboratory. One gram of ash had been pulverized 
for two minutes on a Fritch pulverisette 23 before analysis. 
TN was analyzed by the process of combustion-reduction in 
gas chromatography with the EA Flash Series 112 detector of 
thermic conductivity (Th ermo-Fisher Scientifi c, Milan). Th e 
data acquisition and the respective calculus were eff ectuated 
with the Eafer 300 soft ware (Th ermo-Fisher Scientifi c, Mi-
lan). Th e results are presented as a percentage of a dry sam-
ple. Fire severity was assessed by checking the ash colour by 
the Munsell colour chart (Munsell, 1975) and by ash CaCO3 
content. A detailed description of the methodology is pre-
sented elsewhere (Úbeda et al., 2009).

Statistical analysis
Some basic statistical data were collected, such as the mean 
(m), standard deviation (SD), the coeffi  cient of variation 

Fig. 2. Plot design and sample distribution

Fig. 1. Study area

(CV(%)), minimum (min) 1st quartil (Q1), median (M), 3rd 
quartil (Q3), maximum (max), skewness (SK) and kurtosis 
(Kur). Th e Pearson correlation coeffi  cient was analyzed for 
fi re severity by checking ash colour in the Munsell colour 
chart, with the chroma value (CV), and the CaCO3 content 
(Pereira et al., 2009b). Prior to modelling, data normality had 
been tested by the Shapiro–Wilk test (SW) (Shapiro, Wilk, 
1965) and considered normal at p > 0.05. Statistical analysis 
was carried out with Statistica 6.0. Statsoft  Inc.

Interpolation methods
Interpolation methods can be diff erent depending on their 
assumptions (from global to local perspective) and deter-
ministic or stochastic nature (Luo et al., 2008; Erdogan, 2009).
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Deterministic techniques are based on mathematical functions 
for interpolation and stochastic or geostatistical reliance on 
both statistical and mathematical methods that can be applied 
to create surfaces and access the uncertainty of the estimates. 
In this study, we selected and tested several interpolation me-
thods in order to fi nd the most accurate one for interpolat-
ing TN. Th e deterministic methods included the inverse dis-
tance to a weight (IDW), local polynomial interpolation (LP), 
global polynomial interpolation (GP), radial basis functions 
(RBF) – spline with tension (SPT), completely regularized 
spline (CRS), multiquadratic (MTQ), inverse multiquadratic 
(IMTQ) and thin plate spline (TPS) – and geostatistical me-
thods such as ordinary kriging (OK) and simple kriging (SK). 
In all interpolations we applied a smooth factor of 0.5.

Inverse distance to a weight (IDW)
Th e IDW method is considered a quick but inexact interpo-
lator and estimates the variables attributing more weight to 
closer points. Th e power of IDW controls the signifi cance of 
known points on the interpolated values based on the dis-
tance from the output point. It is one of the simplest and 
popular methods and does not require prior information, 
namely, the variogram model to spatial prediction. It com-
bines the proximity with the gradual change of the trend sur-
face (Babak, Deutsch, 2009). It is calculated according to the 
following formula (Burrough, McDonnell, 2009):

 (1)

where Ż (S0) is the predicted value for location (S0), N is the 
number of measured points surrounding the prediction. λi 
are the weights allocated to each measured point, and Z (si) 
is the observed value at the location (si). Th e weights are a 
function of the inverse distance and are calculated according 
to the formula:

 (2)

Th e power parameter (p) in this method of interpola-
tion is the dependence of the surrounding points upon the 
interpolated value. When the distance (d) increases between 
the measured and the prediction points, the weight that the 
measured point has on the prediction is reduced (Burrough, 
McDonnell, 2009).

Local polynomial (LP)
LP is a moderately quick deterministic method which pro-
vides surfaces similar to those off ered kriging methods. It 
combines polynomial methods and the moving average pro-
cedure (Luo et al., 2008; Yilmaz, 2008). Th is method can be of 
one, two or three orders. In the present study, we tested the 
fi rst and second orders defi ned by the following formulas:

order 1

F (X, Y) = a + bX + cy, (3)

order 2

F (X, Y) = a + bX + cY + dXY + eX2 + f Y. (4)

Radial base functions (RBF)
Th e RBF methods are exact and moderate, quick determinis-
tic interpolators and more fl exible than IDW. Th ese methods 
are similar to those applied in geostatistical simulations, 
however, without variogram modeling. Th ey do not make 
any assumption about the input data points (Smith et al., 
2009). In the SPT method, the tension rules the fl exibility of 
the surface according to the characteristics of the modelled 
phenomenon. Th is technique generates a less smooth surface 
with values more closely constrained by the sample data am-
plitude. In this work, we considered a tension of 0.1. In the 
SPT, the parameter defi nes the weight of tension: the higher 
the weight, the coarser the output surface. Th e spline function 
applies this formula for surface interpolation:

 (5)

where J = 1, 2, …N, N is the number of points, λj are coef-
fi cients found by solving a system of linear equations, rj is the 
distance from the point (x, y) to the 3rd point. T (x, y) and 
R(r) are defi ned diff erently, depending on the selected RBF 
method. In the case of SPT,

T (x, y) = a1 (6)

and

 (7)

where φ2 is the parameter entered at the command line, r 
is the distance between the point and the sample, K0 is the 
modifi ed Bessel function, and c is a constant equal to 0.57721 
(Franke, 1982). CRS is a fl exible method through the choice 
of the tension parameter which controls the characteristics 
of the interpolation function and the smoothing paramether. 
In this study, the tension parameter was 1.8567 (optimized in 
ArcGis and also applied in the other RBF methods). CRS is 
calculated according to the formula:

φ1(r) = ln (cr / 2)2 + E1 (cr)2 + γ, (8)

where E1 is the exponential integral function and γ is Euler’s 
constant. Of all RBF methods, MQ is considered to be the most 
accurate for terrain modelling (Yang et al., 2004; Smith et al., 
2009). It is calculated according to the formula

 (9)

and for IMQ

 (10)
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where r is the vector of distances from the grid point, and c 
is the smoothing parameter. TPS is a method that ensures a 
smooth surface, together with continuous fi rst derivate sur-
faces. It works by fi tting a surface at each sample point, so 
the surface can be smother than if data were fi tted exactly 
(Tait et al., 2005). Th e defi nition of this method is given by 
a linear combination (Luo et al., 2008) and is calculated ac-
cording to the formula

zp = wiφ (ri), (11)

where zp is the estimated value for the surface at the grid point 
p, φ (ri) is the RBF selected, with (ri) being the radial distance 
from point p to the 1st data point. Th e weight wi is estimated 
from the data points (Smith et al., 2009). In the present case, 
we selected TPS (φ) as RBF, hence

φ = c2 r2 ln (cr), (12)

where c is the smoothing factor and r is the vector (Smith et al., 
2009).

Kriging
Kriging is a moderately fast interpolator that takes into ac-
count both the distance and the degree of variation among 
known data points. Th is method is similar to IDW, because 
it uses a linear combination of weights at sampling points 
to estimate the values at unsampled points. One of the main 
advantages of kriging is analysis of the spatial correlation 
between the measured points, given by the variance that is 
computed as the average of the squared diff erence between 
two components of each data pair (Goovaerts, 2000; Chap-
lot et al., 2006; Luo et al., 2008, among others). Th e main ad-
vantage of kriging in comparison with other methods is the 
prediction of the spatial correlation among sampling points, 
calculated according to the formula:

 (13)

where N(h) is the number of data pairs within a given class 
of distance and direction. Th e semi-variance can be a func-
tion of distance and direction, and so it can identify the vari-
able spatial dependence in a certain direction (anisotropy) 
(Luo et al., 2008). Th e computed semi-variogram is omni-
directional (assuming that the variability is identical in all 
directions). Kriging is expressed by the following formula 
(Borrough, McDonnell, 2009):

Z(s) = μ(s) ∑(S), (14)

where Z(s) is the variable of interest, μ(s) is the deterministic 
trend, and ε(S) is the random, autocorrelated errors.

In this work, we selected the OK and SK methods. OK is 
a univariate method and one of the most widespread pro-
cedures in GIS packages. Like the other kriging methods, it 

uses point or block computations, resulting in a smoothed 
surface and inexact interpolation. It assumes a constant but 
unknown average and estimates the average value as a con-
stant on searching the neighbourhood (Goovaerts, 1999; Ku-
mar et al., 2007; Smith et al., 2009). SK assumes that the data 
have a known, constant and mean value throughout the study 
area (Smith et al., 2009).

Assessment criteria for interpolation methods
Th e accuracy of interpolation methods is evaluated analyz-
ing the errors produced by each model. In this study, we used 
the cross-validation procedure that compares the measured 
values with the estimated ones. Th e predicted values are 
obtained taking each observation in turn out of a sample 
and estimating from the remaining ones. Th e produced er-
rors allow us to calculate in each method the mean error 
(ME) and the root mean square (RMSE). Normally, the ME 
should be close to 0. Among all the methods, the one with 
the lower RMSE is the most accurate for interpolating TN. 
Th is methodology was applied also in other studies (Ser-
rano et al., 2003; Robinson, Metternicht, 2006; Gomez et al., 
2008). Th e ME and RMSE are calculated according to the 
following formulas:

 (15)

 (16)

where z(xi) is the observed value,            is the predicted value, 
and N is the number of samples.

We calculated also the relative improvement in the per-
centage (RI%) by each method in relation to the best one ac-
cording to the formula:

 (17)

where RMSEBest is the minimum value of RMSE and
RMSECurrent is the current model.

We observed also the relationship between the predicted 
and the observed values in each model and compared their 
mean values applying a t test for dependent samples signifi -
cant at p < 0.05. Interpolation was performed with SURF-
ER 8.0 (Golden soft ware) and ArcGis 9.3 (ESRI soft ware) for 
Windows.

RESULTS AND DISCUSSION

Th e descriptive statistics of TN in the study area are pre-
sented in Fig. 3. Th e mean of all samples was 1.796%, with 
a maximum of 2.640% and a minimum of 0.93%. Hence, 
we consider that the fi re did not have negative implications 
in TN concentration. Th e spatial variability assessed by the 
CV(%) is not substantial, showing the absence of great and 
abrupt changes in ash TN across the study area. Th e variable
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follows the normal distribution because the p value of the 
SW test is higher than 0.05 and the points in the P–P plot 
are around the straight line (Fig. 4). Th is means that no 
transformation is needed prior to spatial modelling. Hence, 
the models were compiled applying the original data. TN 
concentration showed a signifi cant negative correlation 
with the ash colour and CaCO3 (Table 1). According to 
Pereira et al. (2009b) and Úbeda et al. (2009), ash with a 
higher Munsell CV and CaCO3 content shows that samples 
were burned at a higher severity. A lower percentage of TN 
was concentrated where fi re was more severe. A linear mod-
el was fi tted to the experimental isotropic variogram; this 
means that the TN variability increases with the distance 
in all area of interest (Fig. 5). Th e model presents a reduced 
nugget eff ect, which shows that the sampling error is re-
duced, the sample density is adequate to reveal some spatial 
structures, and small-scale variances are not high. Hence 
the sample design is appropriate for studying TN, and we 
suppose that a good spatial structure will be observed on 
the interpolated map.

Th e highest ash TN concentrations were found in samples 
collected in some points at the north, northeast and the low-
est in the central and eastern parts of the plot (Fig. 6). Th is 
punctual distribution gives an idea about TN distribution. 
To elucidate TN spatial distribution, we tested several inter-
polation methods in order to identify the best technique to 
predict ash TN in the unsampled points. Th e results of em-
ploying the interpolation methods are presented in Table 2. 
In general, the ME is reduced and close to 0, which means 
that the employed methods are unbiased. According to the 
results of this index, the IDW method in all tested powers, 
SK and LP1, subestimated, on average, the original values 
(i. e observed > predicted), contrary to the other methods 
tested in our study. Th e most accurate to interpolate TN was 
the MTQ (lower RMSE) and the worst was the IDW5 method 
(Table 2). In general, IDW methods were less precise to inter-
polate the variables with the higher errors in relation to the 
MTQ. In all cases they were always exceeded 14%. Th e RBF 
and geostatistical methods were most exact in predicting TN. 
In all tested techniques, the mean of the observed values was 
close to the estimated level, and the correlation between the 
observed and the predicted values was signifi cant, especially 
in the RBF and geostatistical methods. Overall, excep LP2 
and GP, the methods that were more accurate in interpolat-
ing TN overestimated the original values. On the contrary, the 
less precise methods, excluding LP1 and SK, subestimated 
TN. Th e LP methods were most and the GP and IDW1 least 
biased (Fig. 7).Fig. 5. Experimental isotropic variogram of ash TN content in Quinta do Conde plot

Fig. 3. Descriptive statistics and the dsitribution

of ash TN content. Shapiro Wilk (SW) test

Fig. 4. P-P plot of ash TN concentration

Ta b l e  1 .  Correlation between ash color and CaCO
3
 content.

* Signifi cant at p > 0.05

Element TN

Ash color –0.44*
CaCO3 –0.43*
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Th e interpolated maps with MTQ and IDW5 (the best 
and the worst of the considered techniques) are shown in 
Figs. 8 and 9. Generally, as described above, the major con-
centrations were observed in the northern and northeastern 
parts of the plot were this severity was more reduced, and 
in the southwestern area. Nevertheless, a careful analysis 
showed some spatial diff erences, especially in the north-
ern and central parts of the plot where the IDW5 created 
“bull’s eyes” around the data points (Fig. 9). Th is is a com-
mon characteristic of this method, also referred to in other 
studies (Smith et al., 2009; Sen, 2009). IDW methods are very 
sensitive to local variations. Th e infl uence of distant points 
is reduced with the increasing power, and this means that 
local factors have more infl uence on the estimated values. 
On the contrary, the RBF and geostatistical methods are less 
sensitive to local variations. Since the RBF and geostatistical 
methods are the best interpolates, ash TN distribution across 

Ta b l e  2 .  Summary statistics of the interpolation methods accuracy. Accuracy is assessed by the cross validation method. Minimum error (Min) and maxi-
mum error (Max) in each interpolation method: in bold the less biased and underlined the less accurate method. Diff erences between Obs vs Est. are signifi -
cant at p < 0.05. Signifi cant correlations at p > 0.01** and p < 0.001***

Method Min Max ME RMSE RI(%) Obs vs Est r

IDW 1 –0.6333 0.7732 0.002372 0.3816 18.80 0.9735 0.61***
IDW 2 –0.5789 0.7870 0.00621 0.3670 14.26 0.9280 0.64***
IDW 3 –0.6703 0.7541 0.009936 0.3842 19.61 0.8901 0.61***
IDW 4 –0.7772 0.8039 0.00876 0.4038 25.72 0.9077 0.58***
IDW 5 –0.8452 0.8544 0.01125 0.4174 29.95 0.8855 0.55**
LP 1 –0.7128 0.7293 0.02962 0.3427 6.69 0.6438 0.71***
LP 2 –0.9044 0.7709 –0.03342 0.3717 15.72 0.6304 0.70***
GP –0.6704 0.7636 –0.002813 0.3677 14.48 0.9674 0.64***
SPT –0.7090 0.5903 –0.01996 0.3394 5.67 0.7534 0.72***
CRS –0.7758 0.5458 –0.01131 0.3361 4.64 0.8573 0.72***

MTQ –0.6553 0.5471 –0.01345 0.3212 – 0.8230 0.74***
IMTQ –0.7587 0.5450 –0.009545 0.3369 4.89 0.8797 0.72***
TPS –0.7549 0.5070 –0.03208 0.3354 4.42 0.6087 0.75***
OK –0.5286 0.5852 –0.01448 0.3339 3.95 0.8168 0.72***
SK –0.5496 0.5454 0.00824 0.3531 9.93 0.9008 0.68***

Fig. 7. Relation between ME and RMSE. Bold line shows 0 value

Fig. 6. Symbol map of TN distribution in the studied area
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the plot was not infl uenced by local factors. Th is spatial pat-
tern of fi re severity eff ects on ash TN content is due to spe-
cies distribution. Th e ash collected in the southwestern part 
of the plot was from Pinus pinaster and in the northeastern 
area from Quercus suber. Normally, litter from Pinus species 
is more vulnerable to fi re temperatures than Quercus litter 
(Pereira et al., 2009c). Also, according to Pereira et al. (2009b), 
the ash produced in the eastern part of the plot was produced 
at higher temperatures. Th is means that TN concentration in 
ash depends also on the species aff ected. Also other variables, 
such as vegetation moisture during fi re evolution, could in-
fl uence fi re severity. In the present case, the study area was 
not located on a steep slope. Th us, the topography seems had 
no great infl uence on fi re behaviour and evolution across 
the plot as was the case in other places (Lorca, Úbeda, 2004; 
Pereira, Úbeda, 2010).

CONCLUSIONS

Th is study showed that the interpolation methods allow an 
accurate assessing of the spatial variation of ash TN. Th e 
variable distribution depends on fi re severity and species 
distribution. Nevertheless, other factors, such as the content 
of TN in the litter before fi re, fuel moisture, fuel patchiness, 

fuel distribution and density might be also important. Th ese 
conditions were impossible to know aft er a wildfi re, because 
we did not assess the study area conditions. Th is is only pos-
sible in prescribed fi res that are planned in landscape man-
agement. Presently, we are monitoring the aff ected area, the 
responses of vegetation to fi re and whether ash TN has im-
plications in half-long term vegetation colonization of the 
burned area.

Th e major conclusions of this work are as follows:
1. Th e wildfi re in the study plot had no coercive impact on 

TN content. Th e spatial variability across the study area was 
not substantial, and the variable showed a negative correla-
tion with fi re severity.

2. Th e TN isotropic experimental variogram showed a 
good structure and fi tted with the linear model, which means 
that the variable variability increased in all the plot.

3. Th e major ash TN concentration was observed in the 
northeastern part of the plot and the lowest in the south-
west.

4. Th e most accurate methods for interpolating TN was 
MTQ, and the worst was IDW5. In general, IDW methods 
were less precise in the variable interpolation. On the con-
trary, RBF and geostatistical methods were more accurate, 
which means that TN distribution depends on some spatial 

Fig. 9. Spatial distribution of TN ac-

cording to IDW5 interpolation method

Fig. 8. Spatial distribution of TN ac-

cording to MTQ interpolation method
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patterns and does not exhibit small-scale variations. Th e ef-
fects of fi re in TN distribution and concentration are mainly 
related to temperatures, species distribution and probably to 
vegetation moisture during fi re evolution.
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BENDROJO AZOTO PELENUOSE PO GAISRO
TERITORINIS PASISKIRSTYMAS: MAŽOS
TERITORIJOS ANALIZĖ

S a n t r a u k a
Gaisro atveju azotas (A) yra viena jautriausių maisto medžiagų dėl 
žemos garavimo temperatūros. Jo koncentracijos kitimas priklauso 
nuo gaisro poveikio stiprumo dėl biofi zikinių salygų ir yra labai he-
terogeniškas gaisro paveiktame skirtingame kraštovaizdyje. Todėl 
gaisro poveikis A pokyčiams gali būti labai įvairus. Azoto koncen-
tracijos gali kisti ir nedideliais atstumais, todėl sunkiau globaliai 
vertinti gaisro poveikį kraštovaizdžiui.

Šio tyrimo tikslas – įvertinti bendrojo azoto (BA) pelenuose pa-
siskirstymą gaisro paveiktoje teritorijoje ir palyginti kelis interpo-
liacijos metodus, siekiant nustatyti tiksliausią iš jų šio tyrimo atve-
ju. Darbe palyginti 8 interpoliacijos metodai – inverse distance to a 
weight (IDW) su svorio koefi cientais 1, 2, 3, 4 ir 5; local polynomial 
(LP) su svorio vertėmis 1 ir 2; global polynomial (GP); Radial basis 
functions (RBF) – spline with tension (SPT); completely regularized 
spline (CRS), multiquadratic (MTQ), inverse multiquadratic (IMTQ) 
ir thin plate spline (TPS) – ir geostatistiniai metodai – ordinary kri-
ging (OK) ir simple kriging (SK). Nustatyta, kad BA koncentracija 
pelenuose yra neigiamai proporcinga gaisro poveikio stiprumui, o 
jos vertės nagrinėjamame plote pasiskirstė tolygiai. Linijinis mo-
delis buvo tinkamiausias, vadinasi, galima teigti, kad BA koncen-
tracijos pelenuose pokytis didėjo nagrinėjamame plote. Didžiausia 
BA koncentracija aptikta šiaurrytinėje dalyje, o mažiausia – pietva-
karinėje. Iš visų taikytų metodų MTQ buvo įvertintas geriausiai, o 
IDW5 – mažiau tiksliai įvertinantis BA koncentracijos pelenuose 
pokyčius. Bendruoju atveju RBF ir geostatistiniai metodai, palygin-
ti su IDW, yra tikslesni. Tokiu atveju BA koncentracijos pelenuose 
pasiskirstymui būdingi specialūs bruožai, tačiau nebūdingi staigūs 
kitimai. Kintamojo pasiskirstymas priklauso nuo medžių rūšies, 
gaisro temperatūros ir galbūt gaisro metu kintančios augalijos
drėgmės.

Raktažodžiai: gaisro poveikio stiprumas, biofi zikinės sąlygos, 
bendrojo azoto koncentracija pelenuose, interpoliacijos metodai


