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1. Introduction
Great cormorants (Phalacrocorax carbo sinensis) are able 
to form extremely large breeding colonies near water 
bodies; for example, there are 11,600 breeding pairs at 
Katy Rybackie in Poland, the largest tree-nesting colony 
in Europe (http://ec.europa.eu/environment/nature/
cormorants/numbers-and-distribution.htm). In Lithuania, 
after 100 years of eradication, great cormorants started to 
breed again in 1989 (Stanevičius and Paltanavičius, 1997). 
The number of breeding pairs in the largest colony in the 
country, located near Juodkrantė, Kuršių Nerija (West 
Lithuania), was estimated at about 3000 in 2005–2010 
(Pūtys, 2012), but was as high as 3800 breeding pairs in 
2011 (Pūtys, 2012) and 3200 in the summer of 2012 (Dagys 
and Zarankaitė, 2013).

The influence of the colony on the environment is 
mainly due to an increase in N and P levels by 104 to 105 
times, leading to death of the forest (Garcia et al., 2011). 
As the trees die, glades are formed and shrubs later replace 
the dead forest (Źółkóś and Markowski, 2006). Generally, 
in the active areas of the colony, plant biomass is decreased 
(Kolb et al., 2010).

The influence of the cormorant colony and an 
associated grey heron (Ardea cinerea) colony has already 
been shown on lichens (Źółkóś et al., 2013), fungi (Osono, 
2012), plants (e.g., Anderson and Polis, 1999), insects, 

spiders, and lizards (Polis and Hurd, 1996). Due primarily 
to increased nitrogen levels, the abundance of herbivores 
and detritivores may increase. 

In this colony of great cormorants in Lithuania, 
complex investigations into the influence of the colony 
on the ecosystem have been performed over the last 
few years as part of the National Research Programme 
“Ecosystems in Lithuania: Climate Change and Human 
Impact (2010–2014)”. It has been shown that despite a 
general increase in the abundance of myxomycetes in the 
territory (Adamonytė et al., 2013), the most active part of 
the breeding colony alters fungal diversity in a negative 
way, with fungal abundance being at its lowest. The biggest 
decrease was observed in mycorrhizal species, but at the 
same time, coprophilous fungi appeared in the forest litter 
and specialised fungi species were recorded on plants 
(Kutorga et al., 2014). Due to altered pH, as well as the 
content of N, P, and Ca, lichen diversity was also affected, 
mostly in the active zone of the great cormorant colony 
(Motiejūnaitė et al., 2014).

So far, the only research into small mammals in colonies 
of great cormorants has been from Lithuania, showing a 
reduction in species diversity and a lower abundance in 
the most active parts of the breeding colony (Balčiauskienė 
et al., 2014).
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The aim of the current study was to determine if 
population structure and body condition of the dominant 
small mammal species, the yellow-necked mouse 
(Apodemus flavicollis), is affected by living in the zones 
of the great cormorant colony, with various intensities of 
influence by the breeding birds.

2. Materials and methods
We investigated the small mammal community living 
in the colony of great cormorants (Phalacrocorax carbo 
sinensis) and the surrounding territory, situated near 
Juodkrantė in Kuršių Nerija National Park (55°33′10″N, 
21°07′30″E), West Lithuania. We defined five zones, each 
differing in the intensity and duration of the impact of the 
colony (Balčiauskienė et al., 2014).

The strongest and longest-lasting influence of the 
colony (Zone A, Figure 1) was recorded in the zone of 
long influence, which contained the greatest number of 
cormorant nests in 2011–2013. In Zone A, the shrub layer 
was scarce or significantly reduced, and trees were dying or 
dead (Figure 2A). Nitrophilic species of plants dominated 
in the herbage layer, the projection of which was less than 
10% (Adamonytė et al., 2013).

Quite strong influence of the colony was observed in 
the expanding part of the colony, typified by fresh nests 
(Zone B, Figure 1). Shrub and herbage layers were scarce 
and trees were dying (Figure 2B). Bare patches without 
herbage or even moss were found on the ground.

The next zone was characterised by a strong former 
influence (Zone C, Figure 1) of the colony, but with most 
nests currently already abandoned by great cormorants. 
Dead and rotten trees were characteristic (Figure 2C). Tree 
saplings and shrubs were regrowing, the herbage layer was 

reestablishing, and the moss layer was absent (Adamonytė 
et al., 2013). 

Two other zones were characterised by even lower 
impact of the colony. We investigated Zone D (Figure 
1, Figure 2D), which was the ecotone between the 
surrounding forest and Zones A, B, and C, and Zone E, 
which was a control zone, an area where the trapping of 
small mammals was performed at a distance from the 
colony. Two types of forest were characteristic of Zone E: 
dry pine forest and mixed forest.

The areas of the zones where small mammals were 
trapped were as follows: Zone A = 4.2 ha, Zone B = 3.2 
ha, Zone C = 4.6 ha, Zone D = 1.6 ha, Zone E = 28 ha 
(Balčiauskienė et al., 2014). 

Small mammals were trapped by snap traps, using 
lines of 25 traps each 5 m apart, baited with bread crust 
with sunflower oil, exposed for 3 days, and checked every 
day in the morning (Balčiauskas, 2004; Balčiauskienė et 
al., 2014). Trapping was done in September and October 
2011; May, September, and November 2012; October and 
November 2013; and June 2014. Snap-trapping effort was 
equal to 4725 trap/days. 

According to Lithuanian law, permission for small 
mammal snap-trapping is not required and thus was not 
issued by the Ministry of the Environment.

In addition, live trapping was performed in June, 
August, and September 2013; individuals found dead in 
live traps were added to the sample. Live-trapping effort 
was equal to 900 trap/days.

In total, 578 small mammal individuals (of 7 species) 
were trapped in the territory of the colony. The dominant 
species was yellow-necked mouse (Apodemus flavicollis): 
432 individuals (74.7% of all catch) were trapped in the 
great cormorant colony and the control zone (Table 1). 

Trapped small mammals were identified and weighed 
to an accuracy of 0.1 g. Standard measures were taken to an 
accuracy of 0.1 mm; the individuals were then dissected, 
with age and sex recorded. Three age categories were used, 
based on the presence and involution of the thymus gland 
and reproductive status of the animals (Prévot-Julliard et 
al., 1999). We examined the mammary glands, uteri, and 
ovaries in females; those with visible placental scars and 
corpora lutea, or who were pregnant or lactating, were 
defined as adults. Females with inactive reproductive 
organs, such as small nipples and closed vagina, were 
defined as subadults, while females with a thread-like 
vagina were classified as juveniles. Males with scrotal testes 
and full cauda epididymis were defined as adults, those 
with developed abdominal testes as subadults, and those 
with hardly visible testes as juveniles (Prévot-Julliard et al., 
1999; Balčiauskas et al., 2012).

The age and sex structures of A. flavicollis in all zones 
were compared using chi-square statistics.

Figure 1. Location of Zones A–E in the colony of great cormorants 
near Juodkrantė, West Lithuania, 2011–2013. 
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To define the body condition of the trapped individuals, 
we selected an index based on the ratio of body weight and 
body length (Drouhot et al., 2014). Such indices are used 
as indicators of animal health (Peig and Green, 2009). We 
used the body condition index C = (Q/L3) × 105, where Q 
is body weight in g and L is the body length in mm (Moors, 
1985). 

We applied GLM main effects ANOVA for body 
condition index C, body weight, and body length with year 
and month of trapping, zone, sex, and age of an individual 
as categorical predictors for testing of possible influence 
according to Tête et al. (2013).

Based on the assumption that body length is the best 
descriptor of body structure (Peig and Green, 2009; Tête 

C D

A B

Figure 2. Zones A–D, in which small mammals were trapped in 2011–2014: Zone A – strongest and longest-lasting influence of 
the colony; Zone B – expanding part of the colony, Zone C – strong former influence; Zone D – ecotone zone between colony 
and surrounding forest.

Table 1. Sample size of A. flavicollis trapped in the colony of great cormorants near Juodkrantė, West Lithuania, 2011–2014.

Year
Males Females Both sexes together

Adult Sub. Juv. Adult Sub. Juv. Adult Sub. Juv. Total*

2011 7 4 16 12 4 7 19 8 23 50

2012 32 33 23 16 27 39 48 71 63 187

2013 34 18 16 20 19 34 54 37 50 141

2014 23 2 9 19 3 39 2 12 54

Total 96 68 64 64 50 83 160 118 148 432

*: A few individuals, mainly destroyed by carnivores or insects, were not aged or sexed, and thus the total is bigger than the simple sum.
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et al., 2013), we regressed body weight against body length 
of every trapped individual, excluding pregnant females 
and individuals destroyed or eaten in traps by insects or 
carnivores from the sample. We used linear regressions 
and the least square method based on the high correlation 
between body weight and length. Due to the significant 
differences in body size, regressions for males and females 
were calculated separately. Structural body weight was 
obtained for every individual based on the regressions. 
Individuals with positive residuals were assumed to be in 
better condition as predicted by their size, and vice versa 
(Blackwell, 2002). We calculated the number of individuals 
in better and in worse condition for all five zones and 
tested their proportions using the chi-square test.

All calculations were done with Statistica 6.0 for 
Windows (www.statsoft.com). 

3. Results
The sex and age structure of trapped A. flavicollis was 
different between zones of the great cormorant colony 
(Figure 3). The percentage of males significantly differed 
among the zones (χ2 = 35.79, df = 4, P < 0.0001), being 
highest in the zone of strongest and longest-lasting 
influence (over 70%). Females prevailed insignificantly 
only in the control zone.

The age structure of the trapped A. flavicollis was also 
different between zones of the colony: in the active zones, 
Zones A and B, the percentage of adult individuals was 
the lowest, while that of juvenile individuals the highest, 
at over 40%. In the control zone, Zone E, and in the 
ecotone between the colony and the surrounding forest, 
the percentage of adult mice was the highest at about 45%, 
while juveniles were less than 30% (Figure 3). Differences 
in the proportion of adult and subadult individuals (χ2 = 

32.02) and the proportion of adult and juvenile individuals 
(χ2 = 25.29, both df = 4, P < 0.0001) between zones was 
significant, while the proportion of the subadult and 
juvenile mice was not (χ2 = 3.38, P < 0.5). 

As for size, males of A. flavicollis were larger than 
females (body mass 38.02 ± 0.70 and 31.30 ± 0.60 g, 
respectively, Student’s t = 7.09, df = 403, P < 0.0001). 
However, body condition was the same in both sexes, C = 
3.31 ± 0.03 in males and C = 3.36 ± 0.05 in females, t = 0.94, 
P = 0.34. Following this, we regressed body weight against 
body length for males and females separately. In animals 
of both sexes, body weight was significantly correlated to 
body length (Figure 4). 

Residuals of the standardised body weight of A. 
flavicollis showed that the influence of the great cormorant 
colony was negative (Table 2). Body condition in the 
control zone was balanced, i.e. there was a similar ratio of 
mice with greater and lower body weights than predicted 
by linear regression; for males it was 54% and 46% and for 
females it was 45% and 55%, i.e. 49% and 51% accordingly 
(differences not significant). In the zones influenced by 
the colony (A, B, and C), about 40% of mice had body 
weights greater than predicted, while 60% were smaller 
than predicted. This is significantly less than in Zone D, 
where the rate of A. flavicollis with body weights greater 
and smaller than predicted by linear regression was 65% 
and 35%, respectively (the difference significant for males, 
χ2 = 10.95, df = 1, P < 0.001; for females, χ2 = 5.23, P = 0.02; 
and for all individuals, χ2 = 105.73, P < 0.0001). 

We found that the body weight of mice depended on 
trapping year and month, the zone, the sex of the animal, 
and age (main effects ANOVA, F15,389 = 47.72, P < 0.0001, 
R2 = 0.63). All parameters analysed were highly significant 
for influence of the zone (Figure 5A). The body length of 
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Figure 3. Sex (A) and age (B) structure of A. flavicollis trapped in 2011–2014 in the zones of the great cormorant colony 
(Zone A – strongest and longest-lasting influence of the colony; Zone B – expanding part of the colony; Zone C – strong 
former influence; Zone D – ecotone zone between colony and surrounding forest; Zone E – control).
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the mice was also influenced by all five parameters (main 
effects ANOVA, F15,389 = 31.95, P < 0.0001, R2 = 0.54). The 
influence of the zone was also highly significant (Figure 
5B). Variation of the body condition index was defined 
(F15,387 = 6.53, P < 0.0001, R2 = 0.17) and was influenced 
mostly by the month of trapping (F5,387 = 14.32, P < 0.0001), 
and then by zone (Figure 5C) and year of trapping (F3,387 = 
2.71, P < 0.05), but not by age or sex of the animal.

4. Discussion
In a colony of tree-nesting colonial birds, the main 
pressure on the environment is the input of nutrients, 
mainly nitrogen, phosphorus, and organic carbon 
(Breuning-Madsen et al., 2010). Depending on the N 
input from birds in nonproductive ecosystems, plants may 
be more productive (Anderson and Polis, 1999), resulting 
also in an increase in abundance of insects, spiders, and 
lizards (Polis and Hurd, 1996). Consumption of plants and 

detritus high in N may lead to an increase in the body size 
of herbivorous or detritivorous organisms (Anderson and 
Polis, 1999). However, negative impacts of the colonies 
are not uncommon in fungi (Osono, 2012; Adamonytė et 
al., 2013), lichens (Źółkóś et al., 2013; Motiejūnaitė et al., 
2014), plants (Adamonytė et al., 2013), and insects (Kolb et 
al., 2012). Positive impacts may also be recorded in some 
species of lichens (Motiejūnaitė et al., 2014) and insects 
(Kolb et al., 2012). 

Small mammal diversity in the active great cormorant 
colony is suppressed (Balčiauskienė et al., 2014). It is 
known that even small amendments of nitrogen negatively 
influence the survival of small mammals in a territory 
(Clark et al., 2005). However, not much is known about 
the underlying mechanism of the nitrogen impact; it has 
been shown that small granivores/omnivores might have 
higher N requirements than larger herbivores do (Parsons 
et al., 2005). It can only be said that landscape structure 
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Figure 4. Correlation of the body weight and length of A. flavicollis trapped in 2011–2014 in the great cormorant colony: A – 
males, B – females.

Table 2. Distribution of residuals of standardised weight according to linear regression of A. flavicollis trapped in 2011–
2014 in the zones of the great cormorant colony (Zone A – strongest and longest-lasting influence of the colony; Zone 
B – expanding part of the colony; Zone C – strong former influence; Zone D – ecotone zone between colony and 
surrounding forest; Zone E – control; positive residuals = body condition is better than predicted from body length, 
negative residuals = body condition is worse than predicted).

Zone
Males (n) Females (n) Total (n)

Positive Negative Positive Negative Positive Negative 

A 14 19 5 8 19 27

B 10 10 3 12 13 22

C 36 57 31 41 67 98

D 30 13 22 14 52 27

E 19 16 19 23 38 39
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influences long-term changes within small mammal 
communities (Schweiger et al., 2000), and thus, even after 
great cormorants stop breeding, the territory remains 
affected. In our study, this was the case in the zone of former 
strong influence (Zone C). Although the active influence 
of the colony in Zone C had already ceased, the amounts 
of N, P, and Ca in the soil of this zone in 2010–2011 were 
higher than in other zones of the colony, with a soil pH 
of 3.36 ± 0.28 (Adamonytė et al., 2013). In this zone, the 
diversity of myxomycetes had been somewhat restored 
(Adamonytė et al., 2013), and both nitrophilous lichens 
and those characteristic to mixed forests were recorded 
(Motiejūnaitė et al., 2014). As of yet, there have been no 
investigations on the time required for small mammals to 
reestablish diversity and abundance after cormorants no 
longer breed. 

We found that the negative impact of the breeding 
colony of great cormorants in 2011–2014 was still present 
in the zone of former strong influence (Zone C). Body 
weight, body condition index, and population structure 
of the dominant small mammal, A. flavicollis, in this zone 
were similar to those of the zone of active colony influence, 
not to the control or ecotone zones. The same tendency 
was shown by the distribution of residuals of standardised 
weight against linear regression. In this respect, the 
influence of the colony is comparable to that of pollution 
shown in other species of the genus Apodemus, e.g., striped 
field mouse (A. agrarius) and wood mouse (A. sylvaticus) 
(Velickovic, 2007; Tête et al., 2013; Drouhot et al., 2014). 
However, due to short generation, intensive breeding, and 
migration, small mammals are able to rapidly recover as 
soon as the disturbance factor is removed (Bush et al., 
2012).

The term “condition” or “body condition” may be used 
in quite different ways (Schulte-Hostedde et al., 2005). It 
is mainly used for the relation of the body weight to body 
size, where body length (Velickovic, 2007) or condylobasal 
skull length (Alcántara and Díaz, 1996) may be used as 
a size measure. A more sophisticated approach is to use 
residuals of standardised body weight or body condition 
index against linear regression, describing the relation 
of body size to mass (e.g., Schulte-Hostedde et al., 2005; 
Peig and Green, 2009, 2010). Linearity of relation between 
body size and weight is very important for the correct use 
of body condition indices (Schulte-Hostedde et al., 2005). 
For small mammals this relation is expected to be linear 
(Peig and Green, 2009, 2010), and so it was in our sample 
of A. flavicollis.

In small mammals, body weight and body condition 
may depend on many factors, among them animal 
sex, geographic location, habitat where the sample was 
collected, and pollution (Alcántara and Díaz, 1996; Díaz 
et al., 1999; Stevenson and Woods, 2006; Velickovic, 
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Figure 5. The influence of the zone on body weight (A), body 
length (B), and body condition index (C) of A. flavicollis trapped 
in 2011–2014 in the zones of the great cormorant colony (Zone A 
– strongest and longest-lasting influence of the colony; Zone B – 
expanding part of the colony; Zone C – strong former influence; 
Zone D – ecotone zone between colony and surrounding forest; 
Zone E – control).
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2007; Peig and Green, 2010; Tête et al., 2013; Drouhot et 
al., 2014). In turn, body weight and body condition may 
impact litter size (Evsikov et al., 2008). The complexity 
of factors determining body condition may explain why 
residuals from the linear regression explain only a small 
part of the variation in the body condition index in small 
mammals (Schulte-Hostedde et al., 2005).

Our results show that life in the territory under 
the nests of the breeding colony of great cormorants 
imposes consequences on the dominant small mammal, 
A. flavicollis. In the most intensively used territory, the 
population structure of A. flavicollis is biased towards 
a higher representation of males and young individuals. 
Generally, a biased sex ratio shows poor or disturbed 
habitat, or variation of the habitat quality over time 
(Julliard, 2000). In our case all three presumptions may 
work. In another study, males were prevalent in both mice 
and voles as an outcome of heavy grazing (Bush et al., 
2012). It is quite possible that, in disturbed habitat, litters 

are male-biased due to higher cortisol level in mothers, as 
has been shown for ground squirrels (Ryan et al., 2012).

We also found that in the most intensively used zone, 
mice were characterised by smaller body weight and 
body condition indexes. Variation of the body weight 
and length was dependent on animal sex and age, but not 
the body condition index. Thus, differences in the age 
and sex structure of the mice trapped in different zones 
had no influence on results: despite a greater number of 
juvenile A. flavicollis and an insignificantly higher body 
condition index in this age group, the average body index 
was lower in the zone actively used by nesting cormorants. 
In conclusion, we confirm that the negative impact of the 
breeding colony of great cormorants was strongest in the 
most active zones of the colony.
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