# Accepted Manuscript

Accumulation of chemical elements in yellow-necked mice under a colony of great cormorants

Marius Jasiulionis, Linas Balčiauskas, Laima Balčiauskienė, Ričardas Taraškevičius

PII: S0045-6535(18)31678-3

DOI: 10.1016/j.chemosphere.2018.09.025

Reference: CHEM 22105

To appear in: ECSN

Received Date: 2 May 2018

Revised Date: 22 August 2018

Accepted Date: 4 September 2018

Please cite this article as: Jasiulionis, M., Balčiauskas, L., Balčiauskienė, L., Taraškevičius, Rič., Accumulation of chemical elements in yellow-necked mice under a colony of great cormorants, *Chemosphere* (2018), doi: 10.1016/j.chemosphere.2018.09.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Chemosphere Kere fr interest

魙





1 Accumulation of chemical elements in yellow-necked mice under a colony of great

# 2 cormorants

- 3 Marius Jasiulionis<sup>a</sup>, Linas Balčiauskas<sup>a</sup>, Laima Balčiauskienė<sup>a</sup>, Ričardas Taraškevičius<sup>a,b</sup>
- 4 <sup>a</sup> Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania (e-mail:
- 5 jasiulionis.m@gmail.com; linasbal@ekoi.lt; laiba@ekoi.lt; ricardas.taraskevicius@gmail.com)
- 6 <sup>b</sup> Marine Research Institute, Klaipėda University, Herkaus Manto 84, LT-92294 Klaipėda,
- 7 Lithuania
- 8 **Corresponding author:** Marius Jasiulionis (e-mail: jasiulionis.m@gmail.com)

#### 9 Abstract

10 This study represents the first investigation into the accumulation of chemical elements in 11 small mammals inhabiting the territory of a great cormorant colony. Trapping was done in the 12 Juodkrantė great cormorant colony, one of the largest colonies in Europe. The accumulation of 20 chemical elements in the bodies (muscle and bones) of yellow-necked mice (Apodemus 13 *flavicollis*) was investigated using the energy-dispersive x-ray fluorescence equipment Spectro 14 15 Xepos HE. Two groups of positively inter-correlated chemical elements (Mg, Al, P, Ca and Al, 16 S, Cl, K) were identified. The concentrations of five elements differed significantly between mice trapped in different zones of the colony with differing intensities of cormorant influence: 17 18 the values of K and Cu in A. flavicollis increased in line with an increase in the influence of the 19 cormorants, while the concentrations of Rb and Pb decreased. The concentrations of Mn differed between zones, but were not related to the intensity of bird influence. Differences in the 20 concentration of Zn (ANOVA F = 24.38; p < 0.001), Fe (F = 4.60; p < 0.05) and Mo (F = 4.47; p21 22 < 0.05) were related to the gender factor, all concentrations being higher in females. The concentrations of Zn were age-dependent, being highest in adult individuals (21.7 $\pm$ 4.5 µg g<sup>-1</sup>) 23 and exceeding those in subadult (19.4 $\pm$ 3.4 µg g<sup>-1</sup>) individuals or juveniles (16.7 $\pm$ 1.3 µg g<sup>-1</sup>). In 24 25 general, the concentrations of accumulated elements in A. flavicollis from the territory of the 26 cormorant colony were lower than in rodents from industrially polluted sites.

27

28 Keywords:

29 Apodemus flavicollis; Phalacrocorax carbo; essential elements; contamination; cormorant
30 colony.

#### 32 **1. Introduction**

33 Atmospheric deposition and anthropogenic activities (agriculture, mining, combustion, 34 industry) release significant quantities of trace elements and heavy metals. Entering water ecosystems, these substances accumulate in hydrobionts or deposit in bottom sediments (Yi et 35 al., 2011; Gajdoš and Janiga, 2015; Hsu et al., 2016). Great cormorants (Phalacrocorax carbo 36 37 sinensis), like other piscivorous birds breeding in colonies, play an important role in transporting 38 nutrients from water to land ecosystems (Osono et al., 2002; Ellis et al., 2006; Gwiazda et al., 39 2010; Klimaszyk et al., 2015; Otero et al., 2015). Most trees, shrubs and other plants in the territories of cormorant colonies die after few years due to over-fertilization (Garcia et al., 2011) 40 41 and are replaced by other plant communities (Ayers et al., 2015; Matulevičiūtė et al., 2018). 42 Lichen and fungal communities also change (Osono et al., 2002), as do communities of insects, spiders and lizards (Polis and Hurd, 1996). Most of these changes are related to N and P levels in 43 the soil, which can be increased by  $10^4$  to  $10^5$  times (Garcia et al., 2011). Trace elements, 44 45 including hazardous heavy metals, enter the soil from cormorant excrements (Taraškevičius et al., 2013). Though some trace elements (Al, Fe, Ni, Cu, Zn, Sr, Mo) are harmful at higher 46 concentrations, macroelements (Na, Mg, K, Ca) may be beneficial (Pais and Jones, 1997; 47 48 Hernout et al., 2016).

Concentrations of heavy metals and trace elements have recently been investigated in different animal taxa, including insects (Aydogan et al., 2017), crustaceans (Gedik et al., 2017), fish (Yi et al., 2011; Benzer, 2017), amphibians (Qureshi et al., 2015), reptiles (Nasri 2017), birds (Kral et al., 2017) and mammals (Lehel et al., 2015; Neila, et al., 2017). Small mammals have been (Wren, 1986) and remain a favourite object for research into metal and trace element accumulation (Martiniaková et al., 2012; Gajdoš and Janiga, 2015; Bortey-Sam et al., 2016; 55 Khazaee et al., 2016). Accumulation of heavy metals in small mammals has been well 56 documented in polluted areas, including near mines (Phelps and McBee, 2009; Bortey-Sam et 57 al., 2016; Khazaee et al., 2016), power stations (Martiniaková et al., 2010) and paper mills (Gaidoš and Janiga, 2015). Small mammals serve as suitable objects to study the accumulation of 58 heavy metals and trace elements, as the concentrations of the metals in the bodies, organs or 59 tissues of the animals reflect the residues in the soil (Shore and Rattner, 2001; Ieradi et al., 2003; 60 61 Martiniaková et al., 2011 and references therein). As a research subject, yellow-necked mouse 62 (Apodemus flavicollis) was chosen for several reasons. In particular, A. flavicollis is the most abundant small mammal species in the territory of the investigated great cormorant colony 63 64 (Balčiauskas et al., 2016). Additionally, it is characterized by intensive metabolism, a granivorous/insectivorous diet and small individual territories (Butet and Delettre, 2011; Gajdoš 65 and Janiga, 2015). The home range median value for A. *flavicollis* has been identified as 625 m<sup>2</sup> 66 for males and 551 m<sup>2</sup> for females (Vukićević-Radić et al., 2006). A. flavicollis is also known as 67 68 proper biomonitor of metal pollution (Petkovšek et al., 2014), with increased levels of metals in the organism relating to environmental pollution (Martiniaková et al., 2011). In our study, we 69 70 analysed chemical elements in the muscles and bones of the skinned bodies of A. flavicollis. In 71 comparison to internal organs, bones accumulate metals over a longer time period (Martiniaková 72 et al., 2011; 2012) and, as very few A. flavicollis individuals live longer than a year, it can be 73 considered to reflect the elemental load of the year of trapping (Martiniaková et al., 2010; Gajdoš 74 and Janiga, 2015).

Various aspects of the influence of great cormorant and other colonial bird colonies on the environment are known already (Ayers et al., 2015; Lafferty et al., 2016). However, investigations into the accumulation of heavy metals and trace elements in small mammals

inhabiting these colonies are lacking. The investigated colony in Juodkrantė is one of the biggest
in Europe, with a maximum number of breeding pairs being 3800 in 2015 (V. Knyva, pers. com).
Feeding in both marine and inland waters, including aquaculture, great cormorants are almost
purely piscivourous and the estimated biomass of consumed fish in the Juodkrantė colony is ca.
700 tons per year (Pūtys, 2012), with part of this biomass thereafter reaching the ground in the
colony in the form of excrement and lost fish, as well as dead chicks during the breeding season.

84 This study represents the first investigation into heavy metals and trace elements in small 85 mammals occupying the territory of a colony of great cormorants. Research concerning the 86 ecology of mammals in the colonies of great cormorant is still very limited, but decreases in the 87 diversity of the small mammal community and a reduction in abundance have been described in relation to the great cormorant colony in Juodkrantė (Balčiauskienė et al., 2014), along with 88 alterations in the population structure and a decline in body condition (Balčiauskas et al., 2015). 89 90 Reductions in A. *flavicollis* body weight, body length and index of body condition, as well as 91 changes in skull size and shape, were greatest in the most affected zones of the colony 92 (Balčiauskienė et al., 2015; Balčiauskas et al., 2016). Increased stable isotope signatures in the 93 small mammals, related to the intensity of cormorant influence, show the consequences of 94 biological pollution (Balčiauskas et al., 2016). We hypothesized that such changes may be 95 related to variations in the concentrations of chemical elements in the tissues of the small 96 mammals. To test the hypothesis, we studied the concentrations of 20 elements in the skinned 97 bodies of A. flavicollis trapped in different zones with different levels of impact by great 98 cormorants. Differences in accumulation depending on age and gender of mice were evaluated.

99

#### 101 **2. Material and methods**

#### 102 **2.1 Study site**

103 Small mammals were trapped in a colony of great cormorants situated in the western part of Lithuania near Juodkrante on the Curonian Spit (WGS 55° 31' 14.22", 21° 6' 37.74"). This 104 105 colony is the largest in Lithuania and one of the largest in Europe. It is also distinguished by high 106 biological pollution reflected even in small mammals, encompassing all investigated aspects of 107 their biology and ecology (Balčiauskas et al., 2015). The number of breeding pairs reached 3800 108 in 2015 (V. Knyva, pers. com.) and the area of the colony covers around 12 ha. Four zones with 109 differing levels of colony influence have been defined in the territory (Fig. 1): 110 Zone A – the control zone. This is outside the colony and there is no direct influence by nesting

111 cormorants on the habitat.

112 Zone B – the zone of the ecotone. This is located between zones C and D and the surrounding

113 forests that are not influenced by the colony. There are few nests in this zone and the influence of

114 the cormorants is weak.

Zone C – the zone of active influence. This is the active part of the colony with the highestconcentration of nests and the strongest influence of the colony.

117 Zone D – the zone of former active influence. Nests are already abandoned and trees are dead,

118 many of them rotten, fallen and decaying.

119

#### 120 2.2 Small mammal sampling

121 Small mammals were trapped in the middle of September 2015, using snap-trap lines, each 122 consisting of 25 traps spaced 5 m from each other. Traps were baited with brown bread soaked in 123 sunflower oil. Exposition of traps was three days (Balčiauskas et al., 2016). Trapping effort was

124 750 trap-days. In total, 132 individuals of six small mammal species were trapped: common 125 shrew (*Sorex araneus*), bank vole (*Myodes glareolus*), field vole (*Microtus agrestis*), root vole 126 (*Microtus oeconomus*), harvest mouse (*Micromys minutus*) and yellow-necked mouse 127 (*Apodemus flavicollis*). The dominant species was *A. flavicollis* (70.5% of all trapped small 128 mammals) and the subdominant *M. glareolus* (22.7%). Other small mammal species were 129 insufficiently represented in the various zones of the colony.

130 Chemical analysis was conducted on the dominant species, *A. flavicollis*. Migration of 131 individuals between zones was investigated in 2013 using live traps and the capture-mark-132 recapture method. No migration cases were identified.

Before dissection, individuals were weighed (to an accuracy of 0.1 g) and measured with sliding callipers (accuracy of 0.1 mm). The gender and age of the animals were determined during dissection. We used three age categories, adult (ad.), subadult (sub.) and juvenile (juv.), depending on the presence and involution of the *gl. thymus* (involuted in adults, disappearing in subadults, functioning in juveniles) and reproductive status (Balčiauskas et al., 2015). Samples were placed in separate bags, labelled and stored in a freezer at a temperature below -18 °C.

139

#### 140 **2.3 Study of chemical elements**

Chemical elements were analysed in 54 individuals (23 males, 31 females / 21 adults, 21 subadults and 12 juveniles) of the dominant species *A. flavicollis*. We used the skinned body (muscle and bones without intestines, hereafter "body") to register the presence and concentration of the following 20 elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, V, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Mo and Pb. The sampling unit used was body of one individual.

146 Samples were oven dried at 100 °C for 12 hours, crushed in agate mortars and later pre-147 mineralized to dry ash at 240 °C to avoid possible ignition and content loss for some volative 148 elements (Markova and Rustschev, 1994; Koh et al., 1999). Ashed samples were milled using the MM 400 mill with zirconium oxide grinding jars and grinding balls (milling time 6 min, 149 frequency 27 Hz). Milled samples were mixed with the Licowax binder (Fluxana) in the 150 151 proportions of 1.25 g of material and 0.28 g of binder (dilution factor 0.816, as recommended by 152 the equipment manufacturers). Each sample was homogenised and pressed for 3 min using 15 153 KN (press PP25) to produce 20 mm diameter pellets (Taraškevičius et al., 2017a). The pellets were analysed by energy-dispersive x-ray fluorescence (EDXRF) equipment Xepos HE (Kleve, 154 Germany) using TurboQuant (TQ) II for pellets calibration module as elaborated by the 155 156 manufacturers. The TQ method combines different procedures: calculation of the mass attenuation coefficient, using the extended Compton model, and final calibration based on 157 158 fundamental parameters method.

159 Samples were re-calibrated using standard bovine muscle (BOVM-1) and the International Plant-Analytical Exchange (IPE) program. Four extra sub-samples were taken from each of the 160 IPE Material Samples and from the BOVM-1. Every fifth milled sample (10 extra sub-samples 161 162 in total) of A. *flavicollis* was divided into two parts to produce an additional second sub-sample 163 of the same primary material. The average values of the variation coefficients of paired sub-164 samples (RSD) were: < 5% for Na, Mg, Al, P, S, Cl, K, Ca, Mn, Fe, Cu, Br, Rb and Sr; 5–10% for Ni and Zn; 14% for Mo; and 20–23% for Si, V and Pb. The detection limits ( $\mu g g^{-1}$ ) of Na, 165 Mg, Al, Si, P, S, Cl, K, Ca, V, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Mo and Pb were 75, 36, 23, 1.5, 166 2.2, 0.6, 0.8, 1.2, 0.9, 0.3, 0.2, 0.8, 1.0, 0.5, 0.2, 0.06, 0.06, 0.07, 0.2 and 0.2 respectively. 167

168 Concentrations of chemical elements were expressed on a wet weight basis in  $\mu g g^{-1}$  (the weight 169 loss on average is 412%).

Preparations were made at the Nature Research Centre (Vilnius) and the analysis of the
prepared samples was carried out (Spectro Xepos HE) at the Marine Research Institute, Klaipėda
University.

173

#### 174 **2.4 Statistical analysis**

175 In our analysis, we utilized the mean, range (min-max) and standard deviation of concentrations, Pearson's correlation coefficients and their significance. The normality of the 176 177 distribution of concentrations was evaluated using Kolmogorov-Smirnov's test (13 out of 20 elements conformed to normal distribution). Based on conformity to normal distribution, 178 parametric tests were used. The influences of multifactors were tested using MANOVA. The 179 180 influences of zone, gender and age were tested using two-way ANOVA with Wilk's lambda for 181 significance. The Tukey post-hoc test was used to compare multiple independent groups. The minimum significance level was set at p < 0.05. We used STATISTICA 6.0 for Windows. 182

183

# 184 **3. Results**

### 185 **3.1 Interaction of host and site factors**

The concentrations of chemical elements in *A. flavicollis* depended on which zone of the great cormorant colony they inhabited (MANOVA Wilks  $\lambda = 0.04$ ,  $F_{3,53} = 2.90$ , p < 0.001) and the gender of the animals (Wilks  $\lambda = 0.41$ ,  $F_{1,53} = 2.06$ , p < 0.05), but in most cases did not depend on the age of the animals (Wilks  $\lambda = 0.29$ ,  $F_{2,53} = 1.20$ , p = 0.262). However, animal age did have a significant impact on the concentrations of Zn in *A. flavicollis*.

Differences in the concentrations of chemical elements did not depend upon interaction of 192 site-based and host factors: agexsite (two-way ANOVA F = 1.14, p = 0.225) and genderxsite (F = 1.16, p = 0.264). However, the interaction of two host factors, i.e., age×gender, did have a 193 194 statistically significant influence (F = 1.93, p < 0.05).

195

#### 196 **3.2 Influence of the great cormorants: the zone factor**

197 Depending on which zone of the great cormorant colony the mice had been trapped in, 198 concentrations of K (ANOVA F = 6.45, p < 0.001), Mn (F = 7.04, p < 0.001), Cu (F = 3.40, p < 0. 199 0.05), Rb (F = 14.59, p < 0.001) and Pb (F = 5.15, p < 0.05) differed in the individuals of A. 200flavicollis (Table S1). The concentration of K was significantly higher in mice from zone D than in zone A (Tukey HSD, p < 0.01) and zone C (p < 0.01). The concentration of Mn was at its 201 highest in mice from zones A and C. The concentration of Mn in zone A was significantly higher 202 203 than in zone B (Tukey HSD, p < 0.01) and zone D (p < 0.001), and the concentration of Mn in 204 zone C was significantly higher than in zone D (Tukey HSD, p < 0.05). The concentration of Cu was at its highest in mice from zone C (significantly higher than in zone A, Tukey HSD, p < p205 0.05), though not significantly differing from zone B (p = 0.09) and D (p = 0.71) (Table S1). 206

207 The concentration of Rb in mice from zone A was higher than in zones B, C and D (Tukey 208 HSD, all p < 0.001), while the concentration in zone B was higher than in zone D (p < 0.05). 209 Similarly, the concentration of Pb was at its highest in mice from zone A (differences from all 210 other zones significant at p < 0.05). Thus, the concentrations of K and Cu in A flavicollis 211 increased in line with an increased influence of the cormorants, while the concentrations of Rb 212 and Pb decreased (Table S1, Fig. 2).

#### **3.3 Differences related to the gender and age of the mice: the host factor**

215 Differences in the concentrations of Zn (ANOVA F = 24.38; p < 0.001), Fe (F = 4.60; 216 0.05) and Mo (F = 4.47; p < 0.05) were related to the gender factor, all concentrations being 217 higher in females (Table 1). We also found that, for some elements, zone factor had a differing influence on males and females. In females, the concentrations of K (ANOVA, F = 4.35, p < 218 219 0.05) and Cu (F = 3.12, p < 0.05) differed according to the zone of colony, while this concentration did not differ in males (F = 1.69, p = 0.20 and F = 0.73, p = 0.16, respectively). 220 221 Vice versa, the concentrations of Fe significantly differed according to the zone of the colony in males (F = 3.57, p < 0.05), but not in females (F = 0.58. p = 0.64). 222

Age-related differences were found in the concentrations of Zn (F = 10.99, p < 0.001). Zn values (21.7  $\pm$  4.5 µg g<sup>-1</sup>) were highest in the bodies of adult individuals, exceeding those in subadult individuals (Tukey HSD, p < 0.05) and juveniles (p < 0.001), while values in subadults also exceeded juveniles (p < 0.05) (Table 1).

- 227
- 228 **3.4 Inter-elemental correlations**

Two groups of chemical elements that positively and significantly correlated between each other within the group were identified in the *A. flavicollis* trapped in the territory of the colony of great cormorants - the first group comprised Mg, Al, P and Ca, while the second group was Al, S, Cl and K (excluding K-Cl, r = 0.252, p = 0.066) (Fig. 3). Outside these groups, strong significant positive correlations in the concentrations were also found between the pairs Br-Fe (r = 0.555, p < 0.001) and Sr-Pb (r = 0.568, p < 0.001). Other correlations between the concentrations of chemical elements are presented in the Table S2.

#### 237 **4. Discussion**

238 Cormorants mediate the transfer of various chemical elements from aquatic to terrestrial 239 ecosystems. The main source of this transfer is bird excreta (Klimaszyk et al., 2015; Otero et al., 240 2015). Pedogeochemical analysis has shown that guano has a low pH, high levels of P, K and Ca 241 (Breuning-Madsen et al., 2010; Lafferty et al., 2016) and raised concentrations of S, Cl, Cr, Ni, Cu, Zn and Pb (Taraškevičius et al., 2013). As was emphasized by the latter author, 242 "geochemical disbalance can be one of the possible reasons of disturbance in natural 243 244 ecosystems". The other possible source of cormorant-borne chemical elements are the fish brought to the colony as food for chicks, some of these being lost and thus reaching the ground 245 246 (Pūtys, 2012). In fish from water bodies in Lithuania, the accumulation of heavy metals follows the order Cd > Pb > Ni > Zn > Cr > Cu (Idzelis et al., 2008), with concentrations of Cd and Pb 247 frequently exceeding the Maximum Tolerable Limit value of both Lithuania and the European 248 249 Union (Staniskiene et al., 2006).

250 In general, the accumulation of trace elements and heavy metals in mammals depends on 251 habitat, available food, season and host factors, such as species, age and gender (Fritsch et al., 2010; Lehel et al., 2015; Neila et al., 2017). Although almost any chemical elements can be 252 253 detrimental to organisms at high doses, some of these elements (Na, Mg, K, Ca) are not only essential at lower concentrations, but are also frequently lacking in organisms. Amongst these, 254 essential elements such as Al, Fe, Ni, Cu, Zn, Sr and Mo can be toxic in high concentrations, 255 256 while Pb and Cd may be toxic even at low concentrations (Pais and Jones, 1997; Hernout et al., 257 2016).

258 Our study was the first investigation into the accumulation of chemical elements in small 259 mammals inhabiting the territories of great cormorant colonies. The main factor determining the

260 concentrations of the chemical elements in A. flavicollis was the zone of the colony, this 261 characterizing nest density and bird presence, thus a proxy of bird influence on the local 262 environment. We found a significant increase in the concentrations of K and Cu and a decrease 263 in Rb and Pb in A. flavicollis trapped in the zones with increased levels of cormorant impact 264 (Table S1). The overall impact of the influence of cormorants can be considered ambiguous in 265 terms of advantageous or disadvantageous – the increase in the essential K and Cu is positive, as 266 is the decrease in the harmful Pb, but the decrease in the essential Rb is negative. A lack of K can 267 be compensated by heightened Rb intake, extending across all the food web (Nyholm and Tyler, 2000), but a deficiency of Rb is reported as harmful (Gajdoš and Janiga, 2015). In fish at least, 268 however, excess Rb in combination with heightened Pb, Mo and As may act as a 269 270 spermatogenesis inhibitor (Yamaguchi et al., 2007).

271 Concentrations of some trace elements and heavy metals in the bodies of A. flavicollis were 272 gender dependent: females accumulated significantly higher concentrations of Zn, Fe and Mo. 273 As for the higher concentration of Mo in females, our results confirm those of Gajdoš and Janiga (2015). Higher concentrations of Zn have also been found in female rats (Bortey-Sam et al., 274 2016), as well as human females (Ziola-Frankowska et al., 2015; Taraškevičius et al., 2017b). 275 276 Research by Zarrintab and Mirzaei (2017) showed opposite results, there a significantly higher 277 level of Zn was found in male rats. Out of all the analysed elements, only the Zn concentration in 278 A. flavicollis was age-dependent in the investigated great cormorant colony. The concentration of 279 Zn increased with age, being highest in adult mice. As well as Zn being involved in the 280 development of sex organs, it is necessary for normal growth and maturation. Additionally, juveniles and pregnant or lactating females have increased requirements for zinc (Roohani, 281 2013). However, it is known that the Zn concentration in mammals is regulated at constant 282

283 concentrations and is mostly present within a narrow range (Hernout et al., 2016). From this 284 point of view, our finding of age dependent Zn concentrations in mice from within the cormorant 285 colony requires further attention. Decreased body size of M glareolus and common vole (Microtus arvalis) have been observed in Pb, Fe, Cu and Zn contaminated areas of Slovakia 286 (Martiniaková et al., 2011), while similar changes in body size and body condition of black-287 288 striped mice (Apodemus agrarius), wood mice (A. sylvaticus) and greater white-toothed shrews 289 (Crocidura russula) have been observed in other polluted areas (Sánchez-Chardi et al., 2007a, 290 2007b; Velickovic, 2007). A decrease in body mass in A. flavicollis in the expanding part of the colony typified by fresh nests was also observed in the investigated colony (Balčiauskas et al., 291 2015). Comparing heavy metal concentrations in M. glareolus from the western part of Lithuania 292 (Mažeikytė and Balčiauskas, 2003), the average concentrations of Pb (0.34  $\mu$ g g<sup>-1</sup>) and Cu (2.61 293  $\mu g g^{-1}$ ) in the bodies of these voles were higher than those accumulated in A. *flavicollis* from the 294 great cormorant colony, while the concentration of Ni (0.61  $\mu$ g g<sup>-1</sup>) did not differ (Table S1). 295 296 However, these concentrations are not directly comparable, as M. glareolus is known to accumulate Cd, Pb, Cu and Zn in higher concentrations than A. flavicollis (Martiniaková et al., 297 2010, 2011). In addition, we have no data on the possible transfer of heavy metals and other 298 299 elements with dust, which may have a significant influence on concentrations in small mammals (Metcheva et al., 2001). 300

301 Compared to other rodents from industrially polluted sites, the concentrations of the 302 accumulated elements in *A. flavicollis* from the territory of the cormorant colony were lower. 303 However, the results are very inconsistent (Table S3). It is known that the accumulation of heavy 304 metals may differ by up to fivefold between species of shrews, voles and mice in the same 305 territory (Wijnhoven et al., 2007). We do not discuss these differences with respect to the

306 species, site or organs, but it is clear that biological pollution by cormorants is lower than that by 307 industrial outputs. Still however, we found differences in some element accumulations that did 308 depend on the level of the impact of the cormorant colony (Table S1). Concentrations of Pb in A. 309 *flavicollis* from the territory of the great cormorant colony were lower not only than those in 310 rodents from industrially polluted sites, but also in comparison to concentrations of various 311 chemical elements in the tissues of the cormorants (Goutner et al., 2011; Misztal-Szkudlinska et 312 al., 2011). We found two groups of chemical elements in the bodies of A. flavicollis with 313 concentrations correlated within the group, namely Mg, Al, P and Ca, plus Al, S, Cl and K (Fig. 314 3). Interactions between chemical elements can be related to the specific mineral structure of the 315 bone tissue and physiological functions of these elements in the organism (Brodziak-Dopierala et 316 al., 2009). Strong correlations between Mg, P and Ca have been found in human bones (Ziola-317 Frankowska et al., 2015), while Gajdoš and Janiga (2015) found strong correlations between S 318 and K. Likewise in our case, the correlation between S and K was very strong (R = 0.808, p < 319 0.001). Moreover, we complement this group with correlations with Cl and Al.

320 We may conclude that the accumulation of five out of 20 investigated elements in the 321 bodies of A. *flavicollis* inhabiting the territory of the great cormorant colony depended on the 322 intensity of bird influence. However, as identified by previous research, this is hardly likely to be 323 the sole reason for significant changes in small mammals (Balčiauskienė et al., 2104, 2015; 324 Balčiauskas et al., 2015, 2016). Many ecological factors are changed due to the biological 325 pollution of the cormorant colony, including the food base for the small mammals, the 326 composition of vegetation, the presence of refuges and disturbance by birds. Chemical changes 327 in the colony resulting from the transfer of materials from the aquatic to terrestrial ecosystem work in complex with these other changes. 328

The main limitation of our work is the sample size. However, the number of small mammals inhabiting the colony is finite and can hardly be bigger. Investigations into other cormorant colonies and other small mammals, such as bank voles (*Myodes glareolus*), will expand the results of this pilot study and may help to gain a deeper understanding of the registered chemical changes.

334

#### 335 **Conflicts of interest**

336 The authors have no conflicts of interest to declare.

337

#### 338 **References**

- Andras, P., Krizani, I., Stanko, M., 2006. Free-living rodents as monitors of environmental
  contaminants at a polluted mining dump area. Carpath. J. Earth. Env. 1(2), 51–62.
- 341 Aydogan, Z., Şişman, T., İncekara, U., Gürol, A., 2017. Heavy metal accumulation in some
- 342 aquatic insects (Coleoptera: Hydrophilidae) and tissues of Chondrostoma regium (Heckel, 1843)
- 343 relevant to their concentration in water and sediments from Karasu River, Erzurum, Turkey.
- 344 Environ. Sci. Pollut. R. 24(10), 9566–9574.
- Ayers, C.R., Hanson-Dorr, K.C., O'Dell, S., Lovel, C.D., Jones M.L., 2015. Impacts of colonial
  waterbirds on vegetation and potential restoration of island habitats. Restor. Ecol. 23(3), 252–
  260.
- 348 Balčiauskienė, L., Jasiulionis, M., Balčiauskas, L., 2014. Loss of diversity in a small mammal
- 349 community in a habitat influenced by a colony of great cormorants. Acta Zool. Bulgar. 66(2),
- 350 229–234.

- Balčiauskienė, L., Balčiauskas, L., Jasiulionis, M., 2015. Skull variability of mice and voles
  inhabiting the territory of a great cormorant colony. Biologia 70(10), 1406–1414.
- 353 Balčiauskas, L., Balčiauskienė, L., Jasiulionis, M., 2015. Mammals under a colony of great
- 354 cormorants: population structure and body condition of yellow-necked mice. Turk. J. Zool.

355 39(5), 941–948.

- 356 Balčiauskas, L., Skipitytė, R., Jasiulionis, M., Trakimas, G., Balčiauskienė, L., Remeikis, V.,
- 357 2016. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope
- 358 signatures in small mammals. Sci. Total. Environ. 565, 376–383.
- 359 Benzer, S., 2017. Concentrations of arsenic and boron in water, sediment and the tissues of fish
- in emet stream (Turkey). B. Environ. Contam. Tox. 98(6), 805–810.
- 361 Bortey-Sam, N., Nakayama, S.M.M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H.,
- 362 Ishizuka, M., 2016. Heavy metals and metalloid accumulation in livers and kidneys of wild rats
- around gold-mining communities in Tarkwa, Ghana. J. Environ. Chem. Ecotoxicol. 8(7), 58–68.
- 364 Breuning-Madsen, H., Ehlers-Koch, C., Gregersen, J., Lojtnant, Ch.L., 2010. Influence of
- 365 perennial colonies of piscivorous birds on soil nutrient contents in a temperate humid climate.
- 366 Geogr. Tidsskr. 110(1), 25–35.
- 367 Brodziak-Dopierala, B., Kwapulinski, J., Kusz, D., Gajda Z., Sobczyk K., 2009. Interactions
- between concentrations of chemical elements in human femoral heads. Arch. Environ. Con. Tox.
  57(1), 203–210.
- Butet, A., Delettre, Y.R., 2011. Diet differentiation between European arvicoline and murine
  rodents. Acta Theriol. 56(4), 297–304.
- 372 Ellis, J.C., Farina, J.M., Witman J.D., 2006. Nutrient transfer from sea to land: the case of gulls
- and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574.

- 374 Fritsch, C., Cosson, R.P., Coeurdassier, M., Raoul, F., Giraudoux, P., Crini, N., Vaufleury, A.,
- 375 Scheifler, R., 2010. Responses of wild small mammals to a pollution gradient: host factors
- influence metal and metallothionein levels. Environ. Pollut. 158(3), 827–840.
- 377 Gajdoš, M., Janiga, M., 2015. Contamination of Apodemus flavicolis in the experimental study
- area Ružumberok. Oecologia montana, 24, 60–69.
- 379 Garcia, L.V., Ramo, C., Aponte, C., Moreno, A., Dominguez, M.T., Gomez-Aparicio, L.,
- 380 Redondo, R., Maranon, T., 2011. Protected wading bird species threaten relict centenarian cork
- 381 oaks in a Mediterranean biosphere reserve: a conservation management conflict. Biol. Conserv.
  382 144(2), 764–771.
- 383 Gedik, K., Kongchum, M., DeLaune, R., Sonnier, J.J., 2017. Distribution of arsenic and other
- 384 metals in crayfish tissues (*Procambarus clarkii*) under different production practices. Sci. Total
- 385 Environ. 574, 322–331.
- 386 Goutner, V., Becker, P.H., Liordos, V., 2011. Organochlorines and mercury in livers of great
- 387 cormorants (Phalacrocorax carbo sinensis) wintering in northeastern Mediterranean wetlands in
- relation to area, bird age, and gender. Sci. Total Environ. 409(4), 710–718.
- 389 Gwiazda, R., Jarocha, K., Szrek-Gwiazda, E., 2010. Impact of a small cormorant (Phalacrocorax
- 390 carbo sinensis) roost on nutrients and phytoplankton assemblages in the littoral regions of a
- 391 submontane reservoir. Biologia 65(4), 742–748.
- 392 Hernout, B.V., Arnold, K.E., McClean, C.J., Walls, M., Baxter, M., Boxall, A.B., 2016. A
- national level assessment of metal contamination in bats. Environ. Pollut. 214, 847–858.
- Hsu, L.C., Huang, C.Y., Chuang, Y.H., Chen, Y.T., Teah, H.Y., Chen, T.Y., Chang, C.F., Liu,
- 395 Y.T., Tzou, Y.M., 2016. Accumulation of heavy metals and trace elements in fluvial sediments
- 396 received effluents from traditional and semiconductor industries. Sci. Rep. 34250(6), 1–12.

- 397 Idzelis, R.L., Kesminas, V., Svecevičius, G., Misius, V., 2008. Accumulation of heavy metals
- 398 (Cu, Zn, Ni, Cr, Pb, Cd) in tissues of perch (Perca fluviatilis L.) and roach Rutilus rutilus (L.)
- under experimental conditions. J. Environ. Eng. Landsc. 16(4), 205–212.
- 400 Ieradi, L.A., Zima, J., Allegra, F., Kotlanova, E., Campanella, L., Grossi, R., Cristaldi, M., 2003.
- 401 Evaluation of genotoxic damage in wild rodens from a polluted area in the Czech
- 402 Republic. Folia. Zool. 52(1), 57–66.
- 403 Khazaee, M., Hamidian, A.H., Shabani, A.A., Ashrafi, S., Mirjalili, S.A.A., Esmaeilzadeh, E.,
- 404 2016. Accumulation of heavy metals and As in liver, hair, femur, and lung of Persian jird
- 405 (Meriones persicus) in Darreh Zereshk copper mine, Iran. Environ. Sci. Pollut. R. 23(4), 3860–
- 406 3870.
- 407 Klimaszyk, P., Piotrowicz, R., Rzymski, P., 2015. Changes in physico-chemical conditions and
- 408 macrophyte abundance in a shallow soft-water lake mediated by a Great Cormorant roosting
- 409 colony. J. Limnol. 74(1), 114–122.
- 410 Koh, S., Aoki, T., Katayama, Y., Takada, J., 1999. Losses of elements in plant samples under the
- 411 dry ashing process. J. Radioanal. Nucl. Ch., 239(3), 591–594.
- 412 Kral, T., Blahova, J., Doubkova, V., Farkova, D., Vecerek, V., Svobodova, Z., 2017.
- 413 Accumulation of Mercury in The Tissues of the Great Cormorant (*Phalacrocorax carbo*) From
- 414 Common Carp. B. Environ. Contam. Tox. 98(2), 167–171.
- 415 Lafferty, D.J.R., Hanson-Dorr, K.C., Prisock, A.M., Dorr, B.S., 2016. Biotic and abiotic impacts
- 416 of Double-crested cormorant breeding colonies on forested islands in the southeastern United
- 417 States. Forest. Ecol. Manag. 369, 10–19.

- 418 Lehel, J., Laczay, P., Gyurcsó, A., Jánoska, F., Majoros, S., Lányi, K., Marosán, M., 2015. Toxic
- 419 heavy metals in the muscle of roe deer (*Capreolus capreolus*)—food toxicological significance.
- 420 Environ. Sci. Pollut. R. 23(5), 4465–4472.
- 421 Markova, K.I., Rustschev, D., 1994. The application of thermal analysis to the study of ignition
- 422 processes of solid fuels. Thermochim. Acta, 234, 85–94.
- 423 Martiniaková, M., Omelka, R., Grosskopf, B., Duranova, H., Stawarz, R. and Balaz, I., 2015.
- 424 Further investigation of risk elements content in the bones of wild rodents from a polluted area in
- 425 Slovakia. Acta Vet. Scand. 57(1), 46.
- 426 Martiniaková, M., Omelka, R., Stawarz, R., Formicki, G., 2012. Accumulation of lead cadmium,
- 427 zinc in bones of small mammals from polluted areas in Slovakia. Pol. J. Environ. Stud. 21(1),
  428 153–158.
- 429 Martiniaková, M., Omelka, R., Jančová, A., Stawarz, R., & Formicki, G., 2011. Concentrations
- 430 of selected heavy metals in bones and femoral bone structure of bank (*Myodes glareolus*) and
- 431 common (*Microtus arvalis*) voles from different polluted biotopes in Slovakia. Arch. Environ.
- 432 Con. Tox. 60(3), 524–532.
- 433 Martiniaková, M., Omelka, R., Grosskopf B., Jančová, A., 2010. Yellow-necked mice
  434 (*Apodemus flavicollis*) and bank voles (*Myodes glareolus*) as zoomonitors of environmental
  435 contamination at a polluted area in Slovakia. Acta Vet. Scand. 52, 58.
- 436 Mažeikytė, R., Balčiauskas, L., 2003. Heavy metal concentrations in bank voles (*Clethrionomys*
- 437 *glareolus*) from protected and agricultural territories of Lithuania. Acta Zoologica Lituanica
  438 13(1), 48–60.

- 439 Metcheva, R., Teodorova, S., Topashka-Ancheva, M., 2001. A comparative analysis of the heavy
- 440 metals and toxic elements loading indicated by small mammals in different Bulgarian regions.
- 441 Acta Zool. Bulgar. 53, 61–80.
- 442 Misztal-Szkudlinska, M., Szefer, P., Konieczka, P., Namiesnik, J., 2011. Biomagnification of
- 443 mercury in trophic relation of Great Cormorant (*Phalacrocorax carbo*) and fish in the Vistula
- 444 Lagoon, Poland. Environ. Monit. Assess. 176, 439–449.
- 445 Matulevičiūtė, D., Motiejūnaitė, J., Uogintas, D., Taraškevičius, R., Dagys, M., Rašomavičius,
- 446 V., 2018. Decline of a protected coastal pine forest under impact of a colony of great cormorants
- 447 and the rate of vegetation change under ornithogenic influence. Silva Fenn. 52(2), article id448 7699.
- 449 Nasri, I., Hammouda, A., Hamza, F., Zrig, A., Selmi, S., 2017. Heavy metal accumulation in
- 450 lizards living near a phosphate treatment plant: possible transfer of contaminants from aquatic to
- 451 terrestrial food webs. Environ. Sci. Pollut. R. 24(13), 12009–12014.
- 452 Neila, C., Hernández-Moreno, D., Fidalgo, L.E, López-Beceiro, A., Soler, F., Pérez-López, M.,
- 2017. Does gender influence the levels of heavy metals in liver of wild boar? Ecotox. Environ.
  Safe. 140, 24–29.
- 455 Nyholm, N.E.I., Tyler, G., 2000. Rubidium content of plants, fungi and animals closely reflects
  456 potassium and acidity conditions of forest soils. Forest. Ecol. Manag. 134(1), 89–96.
- 457 Osono, T., Hobara, S., Fujiwara, S., Koba, K., Kameda, K., 2002. Abundance, diversity, and
- 458 species composition of fungal communities in a temperate forest affected by excreta of the Great
- 459 Cormorant *Phalacrocorax carbo*. Soil. Biol. Biochem. 34, 1537–1547.
- 460 Otero, X.L., Tejada, O., Martin-Pastor, M., Pena, S., Ferreira, T.O., Perez-Alberti, A., 2015.
- 461 Phosphorus in seagull colonies and the effect on the habitats. The case of yellow-legged gulls

- 462 (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain). Sci. Total.
- 463 Environ. 532, 383–397.
- 464 Pais, I., Jones, J.B., 1997. The Handbook of Trace Elements. CRC Press: 1–240.
- 465 Petkovšek, S.A.S., Kopušar, N., Kryštufek, B., 2014. Small mammals as biomonitors of metal
- 466 pollution: a case study in Slovenia. Environ. Monit. Assess. 186(7), 4261–4274.
- 467 Phelps, K.L., McBee K., 2009. Ecological Characteristics of Small Mammal Communities at a
- 468 Superfund Site. Am. Midl. Nat. 161, 57–68.
- 469 Polis, G.A., Hurd, S.D., 1996. Linking marine and terrestrial food webs: allochthonous input
- 470 from the ocean supports high secondary productivity on small islands and coastal land
- 471 communities. Am. Nat. 147, 396–423.
- 472 Pūtys, Ž., 2012. Great cormorant Phalacrocorax carbo sinensis diet and its effect on fish
- 473 community in the eutrophic Curonian Lagoon ecosystem. Summary of doctoral dissertation.
- 474 Vilnius (VUL), 1–48.
- 475 Roohani, N., Hurrell, R., Kelishadi, R., Schulin, R., 2013. Zinc and its importance for human
- 476 health: An integrative review. J. Res. Med. Sci. 18(2), 144–157.
- 477 Qureshi, I.Z., Kashir, Z., Hashmi, M.Z., Su, X., Malik, R.N.. Ullah, K., Hu, K., Dawood, M.,
- 478 2015. Assessment of heavy metals and metalloids in tissues of two frog species *Rana tigrina* and
- 479 *Euphlyctis cyanophlyctis* from industrial city Sialkot, Pakistan. Environ. Sci. Pollut. R. 22(18),
  480 14157–14168.
- 481 Sánchez-Chardi, A., Marques, C.C., Nadal, J., da Luz Mathias, M., 2007a. Metal
- 482 bioaccumulation in the greater white-toothed shrew, *Crocidura russula*, inhabiting an abandoned
- 483 pyrite mine site. Chemosphere 67(1), 121-130.

- 484 Sánchez-Chardi, A., Peñarroja-Matutano, C., Ribeiro, C.A.O. and Nadal, J., 2007b.
- 485 Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse,
- 486 *Apodemus sylvaticus*. Chemosphere 70(1), 101–109.
- 487 Shore, R.F., Rattner, B.A. 2001. Ecotoxicology of wild mammals. Wiley, London
- 488 Staniskiene, B., Matusevicius, P., Budreckiene, R., Skibniewska, K.A., 2006. Distribution of
- 489 Heavy Metals in Tissues of Freshwater Fish in Lithuania. Pol. J. Environ. Stud. 15(4), 585–591.
- 490 Taraškevičius, R., Motiejūnaitė, J., Zinkutė, R., Eigminienė, A., Gedminienė L., Stankevičius,
- 491 Ž., 2017a. Similarities and differences in geochemical distribution patterns in epiphytic lichens
- 492 and topsoils from kindergarten grounds in Vilnius. J. Geochem. Explor. 183, 152–165.
- 493 Taraškevičius, R., Zinkutė, R., Gediminienė, L., Stankevičius, Ž., 2017b. Hair geochemical
- 494 composition of children from Vilnius kindergartens as an indicator of environmental conditions.
- 495 Environ. Geochem. Hlth. DOI 10.1007/s10653-017-9977-7
- 496 Taraškevičius, R., Motiejūnaitė, J., Zinkutė, R., 2013. Pedogeochemical Anomalies in
- 497 Surroundings of Great Cormorant Colony (Case Study in Lithuania). *E3S Web of Conferences* 1.
- 498 Velickovic, M., 2007. Measures of the developmental stability, body size and body condition in
- 499 the black-striped mouse (Apodemus agrarius) as indicators of a disturbed environment in
- 500 northern Serbia. Belg. J. Zool. 137(2), 147–156.
- 501 Vukićević-Radić, O, Matić, R., Kataranovski, D., Stamenković, S., 2006. Spatial organization
- 502 and home range of *Apodemus flavicollis* and *A. agrarius* on mt. Avala, Serbia. Acta Zool. Acad.
- 503 Sci. H. 52(1), 81–96.
- 504 Wijnhoven, S., Leuven, R.S.E.W., Velde, G., Jungheim, G., Koelemij, E.I., Vries, F. T.,
- 505 Eijsackers, H.J.P., Smits, A.J.M., 2007. Heavy-Metal Concentrations in Small Mammals from a

- 506 Diffusely Polluted Floodplain: Importance of Species- and Location-Specific Characteristics.
- 507 Arch. Environ. Con. Tox. 52, 603–613.
- 508 Wren, C.D., 1986. Mammals as biological monitors of environmental metal levels. Environ.
- 509 Monit. Assess. 6(2), 127–144.
- 510 Yamaguchi, S., Miura, C., Ito, A., Agusa, T., Iwata, H., Tanabe, S., Miura, T., 2007. Effects of
- 511 lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish:
- 512 monitoring at Mekong Delta area and in vitro experiment. Aquat. Toxicol. 83(1), 43–51.
- 513 Yi, Y., Yang, Z., Zhang S., 2011. Ecological risk assessment of heavy metals in sediment and
- 514 human health risk assessment of heavy metals in fishes in the middle and lower reaches of the
- 515 Yangtze River basin. Environ. Pollut. 159(10), 2575–2585.
- 516 Zarrintab, M., Mirzaei, R., 2017. Evaluation of some factors influencing on variability in
- 517 bioaccumulation of heavy metals in rodents species: Rombomys opimus and Rattus norvegicus
- 518 from central Iran. Chemosphere. *169*, 194–203.

- 519 Ziola-Frankowska, A., Kubaszewski, A., Dabrowski, M., Kowalski, A., Rogala, P., Strzyzewski,
- 520 W., Labedz, W., Uklejewski, R., Novotny, K., Kanicky, V., Frankowski, M., 2015. The Content
- 521 of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis.
- 522 Biomed Res. Int. 2015, 1–23.

**Table 1.** Concentrations of chemical elements ( $\mu$ g g<sup>-1</sup>) in the bodies of *Apodemus flavicollis* trapped in various zones of the great cormorant colony, according to age and gender groups. Significant differences between groups is presented in bold (ANOVA: \* – p < 0.05, \*\* – p < 0.001).

Superscript letters indicate pairwise age-group differences.

|         | Adults (N=21)        |             | Subadults (N=21)               |             | Juveniles (N=12)               |             | Females (N=31)  |             | Males (N=23)    |             |
|---------|----------------------|-------------|--------------------------------|-------------|--------------------------------|-------------|-----------------|-------------|-----------------|-------------|
| Element | Mean±SD              | Min–Max     | Mean±SD                        | Min–Max     | Mean±SD                        | Min–Max     | Mean±SD         | Min–Max     | Mean±SD         | Min–Max     |
| Na      | 708±103              | 437–929     | 681±86                         | 523-852     | 688±69                         | 577-826     | 706±71          | 558-852     | 676±108         | 437–929     |
| Mg      | 298±43               | 199–366     | 276±43                         | 207-367     | 298±29                         | 255-360     | 298±39          | 227-367     | 277±41          | 199–366     |
| Al      | 81.7±9.3             | 63.9–96.4   | 79.8±11.4                      | 59.6-103.9  | $80.5 \pm 10.6$                | 69.4–100.5  | 80.9±10.3       | 63.2-103.9  | $80.4{\pm}10.5$ | 59.6-100.5  |
| Si      | 23.6±21.5            | 1.5-86.1    | $29.4 \pm 36.0$                | 1.5 - 149.0 | 29.3±23.7                      | 2.7-70.1    | 27.0±23.9       | 1.5 - 82.0  | 27.2±33.5       | 1.5 - 149.0 |
| Р       | $4952\pm528$         | 4106–5996   | 4772±564                       | 3869–6099   | 4949±322                       | 4420–5469   | 4971±496        | 3973–6099   | $4760 \pm 501$  | 3869–5996   |
| S       | 2438±328             | 1738-2977   | 2280±375                       | 1676-3084   | 2154±300                       | 1683-2551   | 2327±335        | 1710-3084   | 2294±384        | 1676-3021   |
| Cl      | 781±83               | 628–941     | 763±74                         | 643–932     | 761±46                         | 693-831     | 782±70          | 643–941     | 752±73          | 628-894     |
| K       | 2721±187             | 2300-3119   | $2635 \pm 184$                 | 2184–2961   | 2591±206                       | 2242-2880   | 2670±209        | 2184–3119   | 2643±174        | 2300-2944   |
| Ca      | 7483±1167            | 5435–9933   | 6905±1243                      | 5167–9851   | 6965±630                       | 5879-7899   | 7364±1071       | 5167–9851   | 6845±1139       | 5207–9933   |
| V       | $0.16\pm0.02$        | 0.12-0.22   | $0.15 \pm 0.02$                | 0.11-0.18   | 0.15±0.02                      | 0.11-0.18   | $0.16\pm0.02$   | 0.11-0.22   | $0.15 \pm 0.02$ | 0.11 - 0.18 |
| Mn      | $0.78\pm0.28$        | 0.48-1.50   | $0.70\pm0.34$                  | 0.42 - 2.03 | 0.88±0.39                      | 0.43-1.75   | $0.82\pm0.32$   | 0.43 - 1.75 | 0.71±0.34       | 0.42 - 2.03 |
| Fe*     | $34.7 \pm 4.2$       | 29.9-42.6   | $33.4\pm6.9$                   | 22.0-54.9   | 35.9±3.8                       | 30.3-42.7   | 35.8±5.5        | 27.9-54.9   | 32.7±4.8        | 22.0-42.1   |
| Ni      | $0.62\pm0.10$        | 0.38 - 0.82 | $0.61\pm0.12$                  | 0.43-0.85   | 0.6±0.12                       | 0.36–0.78   | $0.61\pm0.11$   | 0.36-0.85   | $0.6\pm0.1$     | 0.43-0.79   |
| Cu      | $1.66 \pm 0.13$      | 1.37 - 1.86 | $1.67\pm0.12$                  | 1.47 - 1.95 | $1.74 \pm 0.16$                | 1.5 - 2.03  | $1.69\pm0.14$   | 1.46-2.03   | 1.67±0.13       | 1.37 - 2.00 |
| Zn**    | $21.7 \pm 4.5^{S,J}$ | 15.3-23.2   | <b>19.4±3.4</b> <sup>A,J</sup> | 14.5-24.3   | <b>16.7±1.3</b> <sup>A,S</sup> | 14.7–18.6   | 21.3±4.3        | 14.7–28.2   | 17.5±2.3        | 14.5-23.5   |
| Br      | $2.38\pm0.48$        | 1.28-3.17   | $2.35\pm0.57$                  | 0.88–3.59   | $2.65 \pm 0.37$                | 1.99-3.23   | 2.41±0.56       | 0.88-3.59   | $2.45\pm0.41$   | 1.58-3.11   |
| Rb      | $6.27 \pm 2.45$      | 3.43-13.49  | $6.16 \pm 2.25$                | 3.76–12.23  | 6.18±1.15                      | 4.74-8.28   | 6.35±2.26       | 3.76–13.49  | 6±1.93          | 3.43-12.23  |
| Sr      | $3.14 \pm 1.26$      | 1.91-8.03   | $2.78\pm0.51$                  | 2.15-4.47   | 2.60±0.36                      | 2.11 - 3.28 | $3.03 \pm 1.07$ | 2.08 - 8.03 | $2.69 \pm 0.49$ | 1.91–3.89   |
| Mo*     | $0.66 \pm 0.19$      | 0.32 - 1.09 | $0.61 \pm 0.17$                | 0.27-0.88   | 0.57±0.19                      | 0.24 - 0.88 | 0.66±0.18       | 0.32-1.09   | 0.56±0.16       | 0.24-0.88   |
| Pb      | $0.05 \pm 0.02$      | 0.02 - 0.12 | $0.05 \pm 0.02$                | 0.02-0.08   | $0.04 \pm 0.01$                | 0.02 - 0.05 | $0.05 \pm 0.02$ | 0.02 - 0.12 | $0.04\pm0.01$   | 0.02 - 0.08 |

**Fig 1.** Investigation site (marked by star at inlay map of Lithuania) and location of the zones in the great cormorant colony in Juodkrantė, 2015. Zone A – control, zone B – ecotone between the colony and surrounding forest, zone C – active influence of the colony, zone D – zone of the former influence.

**Fig 2.** Concentrations of K, Cu, Rb and Pb ( $\mu$ g g<sup>-1</sup>) in the bodies of *Apodemus flavicollis* from the different zones of the great cormorant colony (age and gender groups pooled). Zone A – control, zone B – ecotone between colony and surrounding forest, C – zone of active influence of the colony, D – zone of former influence.

**Fig 3.** Intercorrelations between the concentrations of chemical elements in *Apodemus flavicollis* trapped in the territory of the colony of great cormorants (animals from all zones pooled). The correlation between K and Cl (r = 0.252, p = 0.066) is not shown.







Chilling and a second s



# Highlights

- 20 chemical elements in bodies of *Apodemus flavicollis* from a great cormorant colony were studied.
- Concentrations of K, Mn, Cu, Rb, Pb depended on the intensity of cormorant influence.
- Gender-related differences in concentrations of Zn, Fe and Mo were identified.
- Changes in the chemical environment in the cormorant colony affect small mammals.

AND AND