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Abstract

The mammalian gut microbiota is considered pivotal to host fitness, yet the determinants of com-
munity composition remain poorly understood. Laboratory studies show that environmental fac-
tors, particularly diet, are important, while comparative work emphasises host genetics. Here, we
compare the influence of host genetics and the environment on the microbiota of sympatric small
mammal species (mice, voles, shrews) across multiple habitats. While sharing a habitat caused
some microbiota convergence, the influence of species identity dominated. In all three host genera
examined, an individual’s microbiota was more similar to conspecifics living elsewhere than to het-
erospecifics at the same site. Our results suggest this species-specificity arises in part through host-
microbe codiversification. Stomach contents analysis suggested that diet also shapes the micro-
biota, but where diet is itself influenced by species identity. In this way, we can reconcile the
importance of both diet and genetics, while showing that species identity is the strongest predictor
of microbiota composition.
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INTRODUCTION

All animals have evolved in a bacterial world, and harbour a
diverse community of microbial symbionts colonising internal
and external surfaces (McFall-Ngai et al. 2013). The mam-
malian gut houses a particularly dense and diverse community
of microbes that performs many important functions for the
host. These include the provision of otherwise inaccessible
nutrients from food (Rosenbaum et al. 2016), protection from
pathogenic infections (Buffie & Pamer 2013), and detoxification
of poisonous compounds (Kohl et al. 2014). Despite this, we
are only just beginning to understand the processes shaping the
composition of host-associated microbial communities over
evolutionary and ecological timescales (Foster et al. 2017).
Both controlled experiments in laboratory animals and

human studies have shown that environmental factors can
strongly affect gut microbiota composition. In particular, diet
is a major influence, with both short-term diet shifts and long-
term dietary habits affecting these communities (David et al.
2014; Carmody et al. 2015; Sonnenburg et al. 2016; Griffin
et al. 2017). A host’s social and physical environment is also
important. When mice are cohoused, their microbiota compo-
sition converges (Hildebrand et al. 2013; Seedorf et al. 2014;
Griffin et al. 2017), and cohabiting, unrelated humans are
more similar in their gut microbiota than those living apart
(Song et al. 2013). Strong environmental effects have also
been reported in studies of wild animals, including seasonal
and habitat differences (Maurice et al. 2015; Amato et al.
2016; Ren et al. 2017). While genetic effects on the gut

microbiota have been detected in laboratory and human stud-
ies (Wang et al. 2018), these are often rather weak, and
within-species studies typically emphasise the strong influence
of environmental factors, such as diet (Carmody et al. 2015;
Rothschild et al. 2018; Weissbrod et al. 2018).
In parallel, a growing number of phylogenetic studies

have shown the importance of host genetics in shaping the
microbiota. These have found either that microbiota compo-
sition recapitulates the host phylogeny (known as ‘phy-
losymbiosis’), or shows species-specificity, with that of
conspecifics being more similar than that of heterospecifics.
Although not universally detected (Dietrich et al. 2014; San-
ders et al. 2014; Baxter et al. 2015; Martinson et al. 2017),
such host phylogenetic effects have been found in a diverse
range of taxa, including mammals, insects and birds (Och-
man et al. 2010; Phillips et al. 2012; Brooks et al. 2016;
Amato et al. 2018; Nishida & Ochman 2018). Furthermore,
recent work has provided evidence for cospeciation among
mammals and their gut microbes (Moeller et al. 2016).
While these findings suggest an important role for host
genetics, a challenge is that in wild settings such patterns
can have a range of explanations, including environmental
ones. In particular, a major confound is that different spe-
cies often occur in different habitats, such that phylogenetic
patterns may be driven by environmental ones (Brooks
et al. 2016; Groussin et al. 2017)..

A major open question, therefore, is whether host phylo
genetics or a shared environment dominates in shaping the
microbiota. Answering this requires the effects of habitat and
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host genetics to be disentangled in a natural setting. To do
this, we performed a cross-factorial comparison, characteris-
ing the microbiota of individuals from multiple species in each
of three widespread small mammal genera (Apodemus mice,
Microtus voles and Sorex shrews) across the same set of five
contrasting habitats. In this way, we are able to test whether
a shared evolutionary history (belonging to the same species)
or instead a shared environment (being in the same habitat)
dominates in determining gut microbiota composition.

MATERIALS AND METHODS

Trapping, sample collection and diet analysis

Trapping took place between 14th and 27th August 2014 at five
sites (BG, CC, LM, PL, LM, WF) within 3 to 23 km of each
other, near Vilnius in Lithuania (Fig. S1). Sites represented con-
trasting habitats where we expected to trap multiple species
from three common genera – Apodemus (mice), Microtus (voles)
and Sorex (shrews). Sites were far enough apart that animals
should not regularly move between them, but not so distant as
to introduce major within-species genetic differentiation, which
could confound habitat-related microbiota differences; The spe-
cies studied have small home ranges, with the widest ranging
(Apodemus spp.) rarely moving more than 0.25 km (Andreassen
et al. 1998; Wang & Grimm 2007; Yletyinen & Norrdahl 2008;
Stradiotto et al. 2009) and genetic differentiation is also not
expected to be strong at this spatial scale (Gauffre et al. 2008).
Snap traps baited with bread soaked in oil were set at dusk for
2–3 nights per site, and retrieved the next morning. Animals
were placed in sterile bags and kept on ice during transport to
the lab for immediate dissection. Animals were keyed to species
using morphological characteristics, and age (juvenile, sub-
adult, adult), sex, body mass and reproductive status were
recorded (Supplementary Information). To explore the role of
dietary differences in driving microbiota differences, we exam-
ined each individual’s stomach contents. Stomach contents were
inspected under a dissecting microscope to determine the rela-
tive abundance of broad dietary categories (e.g. seed, vegetative
parts, insect, fungi; Fig. S2). An approximately 10 mm section
of the distal colon (in rodents) or simple gut (in shrews) was
removed for microbiota characterisation. The contents were
placed in RNALaterTM and refrigerated at the end of each day.
Because shrews degrade more quickly post mortem, shrews
were dissected before rodents. Utensils were cleaned thoroughly
with 70% ethanol and flamed between dissections. At the end
of fieldwork, samples were spun down, RNALaterTM removed
and samples were stored at �80°C. Five months later, samples
were transported frozen to the UK and stored at �80°C before
DNA extraction. To test how lethal trapping might have
affected microbiota composition, we performed a limited
amount of live-trapping on three nights at two sites (PL and
WF), using small Sherman traps (2 9 2.5 9 6.5”) baited with
grain, carrot and bedding. Animals were transported to the
Nature Research Center, where they were humanely killed by
cervical dislocation, and immediately dissected to take gut con-
tent samples, which were stored and processed exactly as
described above.

16S rRNA gene sequencing

Genomic DNA was extracted from gut content samples using
the MoBioTM PowerSoil kit, according to manufacturer’s
instructions. The V4 region of the bacterial 16S rRNA gene
was amplified using primers 515F/806R (Caporaso et al.
2011), with library preparations following a two-step (tailed-
tag) approach with dual-indexing (D’Amore et al. 2016). Pri-
mer sequences are given in Table S1. Amplicon libraries were
sequenced on an Illumina� MiSeq with 250 bp paired-end
reads. Full details of extraction and sequencing methodology
are in Supplementary Information.

Bioinformatic processing

Sequence data were processed through the DADA2 pipeline
(v1.4) in R to infer amplicon sequence variants (ASVs) (Calla-
han et al. 2016a, 2017) (Supplementary Information). Briefly,
reads were trimmed and filtered for quality, ASVs inferred,
putative chimeras removed and taxonomy assigned using the
13.8 Greengenes database clustered at 97% identity. A phy-
loseq object (McMurdie & Holmes 2013) was created for fur-
ther processing and analysis. ASVs taxonomically assigned as
chloroplast or mitochondria were removed, as well as those
(1.3% ASVs) where a phylum was not assigned, after which
the dataset contained 18 402 ASVs. The R package iNEXT
(Chao et al. 2014; Hsieh et al. 2016) was used to create sam-
ple completeness and rarefaction curves. Sample completeness
plateaued by approximately 10 000 reads (Fig. S3), such that
all samples except one (with 26 reads) were retained, spanning
a read count (before further filtering for beta diversity analy-
ses, see below) of 11 794 to 931 354.

Statistical analyses

All analyses were carried out in R version 3.4.3 (R Core Team
2017). Since the 14 samples from live-caught animals did not
cluster strongly within host genera (Fig. S4), these were
pooled with the 211 other samples during analysis. We con-
firmed that capture method did not strongly influence commu-
nity composition in multivariate PERMANOVAs (see below).

Alpha diversity analyses
For alpha diversity analyses, filtering was limited to the
removal of ASVs assigned as chloroplast, mitochondria or
with phylum unassigned. We used additive diversity partition-
ing (Crist et al. 2003) to ask at what level bacterial diversity
arose – was the greatest turnover in ASV richness seen when
sampling a new host species or family, or was the majority
already present within species, with only relative abundances
changing at higher taxonomic ranks? This method partitions
total diversity (c diversity) into that occurring at the within-
individual (a diversity) and subsequent hierarchical levels –
between individuals, species, genera and families (b diversi-
ties). We used the adipart function in package vegan (Oksanen
et al. 2017) to do this, using asymptotic estimates of ASV
richness per sample calculated in package iNEXT as the
response.
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Beta diversity analyses
For beta diversity analyses, further (abundance) filtering was
performed by only retaining ASVs with more than 1 copy in
at least 5% of samples, to remove potential contaminants and
sequencing artefacts. This resulted in a dataset containing
2474 ASVs, with sample read count ranging from 9291 to
721 783. We also tested a more permissive abundance filter,
retaining ASVs with more than one copy in at least three
samples, leading to a total of 8005 ASVs. Since results were
very similar and conclusions unchanged, results using this
alternative filter are not reported further. A phylogenetic tree
was constructed from ASVs using the method described by
Callahan et al. (2016b), and read counts were normalised
using cumulative-sum scaling (CSS) in the metagenomeSeq
package (Paulson et al. 2013). Pairwise dissimilarities were
calculated using four beta-diversity metrics (Jaccard distance,
Bray-Curtis dissimilarity, weighted and unweighted UniFrac
distances) in packages vegan and phyloseq, and used in princi-
ple coordinates analysis (PCoA). To examine the relative
extent to which species and capture site predicted microbiota
composition in each host genus, four analytical approaches
were used: (1) Hierarchical clustering to visualise whether
microbiota samples predominantly clustered by species or site
(2) permutational analysis of variance (PERMANOVA) (3) com-
parisons of mean dissimilarity values between pairs of samples
according to whether they belonged to the same species and/
or were captured at the same site and (4) Random Forest
Classifier (RFC) models, assessing how accurately samples
could be assigned to species and capture site respectively.

Hierarchical clustering
Hierarchical clustering was performed with the UPGMA algo-
rithm using hclust in R. Trees were visualised using packages
ape (Paradis et al. 2004) and dendextend (Galili 2015).

PERMANOVAs
PERMANOVAs were performed using the adonis function in
package vegan, with 10 000 permutations. Since tests in adonis
are sequential (a term’s explanatory power depends on what is
fitted before it), univariate models including either species or
site were constructed to compare the variance explained by
each, with extraction batch (15 levels) as a blocking factor.
Subsequently, to explore the influence of other variables,
models were constructed including species, site, age, sex and
reproductive status (4-levels: reproductive male, non-reproduc-
tive male, pregnant female, non-pregnant female), a linear
term for body mass and several methodological variables:
sequencing run, raw read count (linear term), capture method,
and the maximum time interval between trap collection and
dissection (linear term). Dispersion tests using function be-
tadisper were performed to assess whether significant species
or site effects could be influenced by differences in group dis-
persion (Anderson 2001).

Permutation tests on pairwise dissimilarity metrics
We tested whether mean community dissimilarity values dif-
fered according to whether or not individuals belonged to the
same species or came from the same site. Monte Carlo

permutations of category labels were used to generate null dis-
tributions of dissimilarity values appropriate to each compar-
ison (Sanders et al. 2014). We used one-tailed P-values, as
there is an a priori expectation that animals belonging to the
same taxon or present at the same site, should be more similar
than those from different taxa or sites.

Random Forest Classifier models
A Random Forest Classifier (RFC) supervised learning algo-
rithm was implemented in package randomForest, to classify
microbiota samples according to either host species or capture
site (Breiman 2001; Knights et al. 2011). Models were run on
CSS-normalised ASV counts with 100 000 trees, and the out-
of-bag error rate used as a measure of classification accuracy.
We also used cross-validation to assess the performance of
models created using 70% of the data as applied to the
remaining 30%, though results were extremely similar to out-
of-bag error estimates and are not reported further. To estab-
lish which ASVs were most important in driving species distin-
guishability, we examined their importance scores (Mean
Decrease Gini) in RFC models, and the taxonomic distribution
of the most important ASVs relative to all ASVs identified.

Variability in strength of the species signal
Evidence from other mammalian groups suggests some gut
microbes coexist stably and cospeciate with their hosts (Moel-
ler et al. 2016). Because host speciation events are recent on
the scale of bacterial phylogenies, this should result in sister
host species containing sister symbiont lineages differing lar-
gely at a fine taxonomic scale. A corollary is that differences
between symbiotic communities arising through cospeciation
should decay at broader bacterial phylogenetic scales (San-
ders et al. 2014). To test for this pattern, we assessed how
sensitive the host species signal was to the level of bacterial
phylogenetic or taxonomic resolution used. We used the tip_-
glom function in phyloseq to group bacterial sequences into
OTUs with progressively lower phylogenetic resolution, and
the tax_glom function to group bacterial ASVs at the family,
order, class or phylum level (using the subset of ASVs
assigned to at least family level). We then examined how this
affected species-distinguishability within each host genus, as
represented by either R2 for the species term in a univariate
PERMANOVA based on Bray-Curtis dissimilarity, or the out-of-
bag error rate for species classification in RFC models. We
also examined how species distinguishability varied among
the four dissimilarity metrics used (in PERMANOVA analyses
and PCoA plots), which differ in the extent to which they
account for phylogenetic relatedness among ASVs.

Analysis of diet in relation to microbiota composition
Diet could vary as a result of phylogenetic effects (host species
have evolved different dietary preferences) or environmental
effects (hosts eat different things in different habitats), such
that dietary variation could contribute to microbiota differ-
ences across species, capture sites, or both. Therefore, for each
host genus we examined variation in diet according to species
and capture site, and whether diet similarity predicted micro-
biota similarity. Bray-Curtis dissimilarity was calculated from
proportional stomach contents data, for individuals with both
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microbiota and diet data (n = 215). We used permutation tests
identical in format to those described above for analysing the
microbiota, to assess pairwise differences among individuals
in diet according to species and site. For each host genus, we
used Mantel tests in vegan to assess whether diet composition
predicted microbiota composition (Bray-Curtis dissimilarity).

RESULTS

We characterised the gut microbiota from 10 species of
mouse, vole and shrew captured at five sites in Lithuania (225
individuals, Table S2, Fig. S1). The majority of species were
captured in all five habitats providing a large number of sym-
patric and allopatric comparisons, both within and across spe-
cies, to evaluate drivers of gut microbiota composition.

The gut microbiota differs strongly among small mammal clades

Analysis of the full dataset showed that gut microbiota
communities were clearly differentiated among the three host
families – mice, voles and shrews (Murinae, Cricetidae and
Soricidae). Principle coordinates analysis on both Bray-Curtis
dissimilarities (Fig. 1a) and Unweighted UniFrac distances
(Fig. S5) revealed clear clustering of samples by host family
(PERMANOVA on Bray-Curtis dissimilarity, host family F2,224 =
59.8, P = 0.001, R2 = 0.35). Indeed, broad differences in micro-
biota composition were evident in the relative abundance of
bacterial phyla across host families (Fig. 1b). In rodents, the
Bacteroidetes and Firmicutes phyla dominated, but voles tended
to have higher relative abundance of Tenericutes and Spiro-
chaetes than mice (Fig. 1b). The microbiota of common shrews
(Sorex araneus) was often dominated by Proteobacteria, whereas
in pygmy shrews (Sorex minutus) the Firmicutes were more domi-
nant (Fig. 1b). In the rodent families where we sampled multiple
genera, community composition was also structured by host
genus (Fig. 1a, PERMANOVA on Bray-Curtis dissimilarity for host
genus: mice F1,67 = 19.7, P = 0.001, R2 = 0.23; voles F1,111 =
25.8, P = 0.001, R2 = 0.19). RFC models also classified samples
to host family or genus with 100% accuracy on the basis of
ASVs. Moreover, this signal remained strong even when higher
bacterial taxonomic units were used for classification; samples
could be classified to host family 99.1% of the time using bacte-
rial families and 98.2% using bacterial phyla, with similar results
for classification to host genus (92.4% for family-level and 96.7%
for phylum-level models respectively). Thus, the gut microbiota
composition of mice, voles and shrews found across the same set
of habitats is distinct even at the level of bacterial phyla.
As well as being compositionally different, microbiota diver-

sity also varied across host families, with voles (especially
Microtus) having approximately double the richness and Shan-
non diversity of mice and shrews (Fig. 1c), consistent with
their more herbivorous diet (Ley et al. 2008; Nishida & Och-
man 2018). Across the total dataset, most diversity (42% bac-
terial sequences) arose at the between-individual level. More
than half the bacterial diversity (59%) was observed within
species, with the remainder at higher taxonomic levels (9%
between species, 12% between genera, 20% across host fami-
lies, Table 1). Within the three genera where multiple species
were sampled (Apodemus, Microtus and Sorex), the greatest

proportion of richness again occurred at the between-indivi-
dual level (51–60%), with less (9–22%) arising across species.
These results suggest that while some bacteria are specific to a
particular host species, genus or family, the majority of turn-
over in bacterial diversity is seen across individuals, indicating
these communities are highly individualised as reported for the
human microbiota (Ley et al. 2006; Faith et al. 2013).

Within host genera, the microbiota is shaped more strongly by

species than capture site

Both species identity and environment (capture site) shaped
gut microbial communities within each genus. However,
across multiple analyses, species identity dominated. First,
hierarchical clustering according to Bray-Curtis dissimilarity
showed that samples grouped primarily by host species, with
less prominent clustering by capture site that occurred largely
within species (Fig. 2a–c). Similar patterns were seen for the
Jaccard and Unweighted UniFrac distances, though clustering
by species was less apparent using Weighted UniFrac
(Fig. S6). Second, PCoA plots based on Bray-Curtis dissimi-
larity showed clear sample clustering by host species, but less
so by capture site (Fig. 2d–f). Third, mean pairwise Bray-Cur-
tis dissimilarity and Jaccard distance among samples was
greater when comparing samples from different species than
samples from different sites (Fig. 3a–c, Table S3). Most defini-
tively, in all host genera an animal’s microbiota composition
was on average more similar to a conspecific caught else-
where, than a heterospecific caught at the same site (Fig. 3a–
c, Table S3). Fourth, Random Forest Classifier (RFC) models
classified gut microbial communities from congeneric animals
to host species with almost perfect accuracy (classification
accuracy: Apodemus 100%, Microtus 98.8%, Sorex 97.7%)
while classification accuracy according to capture site was
poor (Apodemus 47.4%, Microtus 51.2%, Sorex 22.7%).
Finally, univariate PERMANOVAs showed stronger effects of spe-
cies than capture site (Table S4).
Taken together, these results indicate that species identity

dominated over capture site in shaping gut microbiota beta
diversity among congeneric small mammals. However, shared
environment does play some role. Capture site explained a sig-
nificant proportion of variance (9–13%) in all PERMANOVA

models, alongside weaker effects of host age and methodologi-
cal variables (Table S4). In the two rodent genera, mean pair-
wise Bray-Curtis dissimilarity among both con- and
heterospecific individuals was also significantly lower when
they were caught at the same site compared to different sites,
indicating microbiota convergence when living in sympatry.
Site effects were in the same direction but non-significant for
shrews (Fig. 3a–c, Table S3). We even detected minor envi-
ronmental convergence in the microbiota of animals from
more distantly related groups; the microbiota of mice from
the genera Apodemus and Micromys converged in sympatry
(P = 0.003), though we did not find such evidence for voles
(Microtus vs. Myodes, P = 0.176).

Species-indicative microbial taxa

Our results suggest that each host species has a characteristic
microbiota signature that transcends the habitat they are in,
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and the other closely related species they mix with. But which
symbiont taxa are responsible for this? RFC models indicated
that many of the top 20 most important sequence variants
driving species distinguishability in rodents belonged to the
order Bacteroidales (90% for Apodemus, 100% for Microtus),
and the majority (17/20 in both cases) to one particular family
within this order, S24-7. The family S24-7 was strongly over-
represented among species-indicative ASVs compared to all
ASVs in the dataset, whereas other common families including
Lachnospiraceae and Ruminococcaceae were under-repre-
sented (Fig. 4). Both S24-7 and its parent order Bacteroidales
were also suggested to be important for species distinguisha-
bility using other metrics, including the proportion of ASVs
in each taxon that were host species-specific (Fig. S7).
Removal of S24-7 from the dataset notably decreased the

accuracy of RFC models in classifying Microtus samples to
host species (98.8% including vs. 80.23% excluding this fam-
ily), but classification accuracy remained 100% for Apodemus,
suggesting other species-indicative bacteria are also important.
Members of S24-7 were diverse and abundant in rodents,
making up 19% and 30% of ASVs in Apodemus and Microtus
respectively, and ranging in mean relative abundance across
species from 39 to 53%. Further analysis showed that the
S24-7 ASVs most informative for distinguishing congeneric
species in RFCs were scattered throughout this family’s phy-
logeny, as were species-specific ASVs (Fig. S8).
In contrast to rodents, species-indicative ASVs in Sorex

shrews came from a much broader range of taxa, with 50%
Proteobacteria, 15% Tenericutes and the remainder from
other phyla (Fig. 4, Fig. S7). In all three genera, species-

Figure 1 Variation in gut microbiota composition across small mammal clades. (a) Principle coordinates (PCoA) plot based on Bray-Curtis dissimilarities

indicating clustering of samples by host family and genus (b) Phylum-level gut microbiota composition by host species, with taxa unassigned to the phylum

level removed (c) Asymptotic estimates of amplicon sequence variant (ASV) richness and Shannon diversity for each host species sampled, coloured by host

genus, as estimated in R package iNEXT.
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indicative ASVs in RFC models generally had a higher than
average relative abundance (Fig. S9). Overall, these findings
indicate that in rodents, the bacterial taxa most indicative of
host species were not a random subset of those present, but
biased towards particular members of the Bacteroidales,
whereas species-indicative taxa in shrews belong to a much
broader range of bacterial groups.

Species distinguishability is sensitive to bacterial phylogenetic

resolution

For the rodent genera (Apodemus and Microtus), the species
signal was strongest when considering fine-scale bacterial phy-
logenetic resolution rather than deeper branching bacterial
groups. Specifically, the host species signal decayed at broader
phylogenetic scales, yet this pattern was not seen for the effect
of capture site (Fig. 5a). Moreover, at a standardised phyloge-
netic resolution (ASVs), distance metrics that downweight the
influence of recent bacterial evolution (UniFrac metrics)
showed weaker species signals than those that do not (Jaccard
distance and Bray-Curtis dissimilarity; Fig. 5b, Table S5).
Finally, the finer the bacterial taxonomic resolution used, the
greater the accuracy of RFC models at classifying congeneric
rodent samples to host species. For Apodemus, species assign-
ment accuracy dropped from 100 to 70%, and for Microtus
from 99 to 57% when using phyla rather than ASVs as fea-
tures (Table S6). It is important to note, however, that while
species distinguishability declined at coarse bacterial taxo-
nomic resolution, it was still detectable. Even at the level of
bacterial classes, the microbiota of congeneric rodent species
remained statistically distinct (PERMANOVA Species term:
Apodemus R2 = 0.075, P = 0.034, Microtus R2 = 0.061,
P = 0.0313).
By contrast, in Sorex shrews the species signal was insensi-

tive to bacterial phylogenetic resolution (Fig. 5a) and the dis-
similarity metric used (Fig. 5b). RFC classification to species

also remained relatively accurate whether ASVs or whole
phyla were used as features (Table S6).

Association between host diet and the gut microbiota

The resolving power of stomach contents data differed among
host genera. Stomach contents varied little among Apodemus
mice, which have a diet heavily dominated by seeds that could
not be visually distinguished. However, voles and shrews
showed more variation in stomach contents (Fig. S2). Consis-
tent with an effect of diet on the microbiota, diet similarity
correlated positively with microbiota similarity among individ-
uals in all three genera, with this correlation strongest for
voles and marginally significant for mice and shrews (Mantel
test on Bray-Curtis dissimilarities, Microtus: r = 0.22,
P = 0.002; Apodemus: r = 0.07, P = 0.074; Sorex: r = 0.10,
P = 0.070). Predictors of diet composition differed for the
three genera. For Apodemus, where power to resolve dietary
differences was weakest, we only detected a weak effect of
capture site. However, Microtus diet was strongly predicted
by species and less so by site, while Sorex diet only showed a
species effect (Fig. 3d–f, Table S7). In the two groups where
we find marked diet variation, therefore, species identity was
the dominant predictor. Moreover, looking broadly across all
groups and comparisons (Fig. 3) the patterns of similarity in
diet resembled those in the microbiota, consistent with a role
for diet in shaping site and species effects on the microbiota.

DISCUSSION

The relative importance of host genetics and the environment
in shaping the gut microbiota continues to be a topic of major
debate (Spor et al. 2011). Important for this debate are differ-
ences in host phylogenetic scale. Within-species studies often
report relatively weak genetic compared to environmental
effects (Carmody et al. 2015; Rothschild et al. 2018), whereas
across-species comparisons have tended to emphasise genetic
effects, including a pattern of ‘phylosymbiosis’, wherein gut
microbiota similarity among species mirrors the host phy-
logeny (Brucker & Bordenstein 2012; Brooks et al. 2016).
Here, we test the relative importance of host genetics and the
environment where these two scales meet. We find that in
three small mammal genera, host genetics (species identity)
dominates over a shared environment in predicting gut micro-
biota composition. Specifically, an individuals’ microbiota was
on average more similar to conspecifics living elsewhere than
to members of a closely related species living in the same loca-
tion. Moreover, while environment (capture site) did shape
the microbiota, this effect was largely within species;
heterospecific rodents converged somewhat in gut microbiota
composition when living in sympatry, but this was insufficient
to override the strong influence of species identity.
Our finding of strong and consistent species differences in

the mammalian microbiota implies that host phylogenetic
effects previously documented at broad scales (Groussin et al.
2017; Moeller et al. 2017; Amato et al. 2018; Nishida & Och-
man 2018) persist even among closely related species living in
sympatry. Consistent with our findings, work on primates has
shown that host phylogeny dominates over geography and

Table 1 Hierarchical partitioning of total amplicon sequence variant

(ASV) richness. Additive diversity partitioning was performed using the

adipart function in R package vegan.

Host group Mean # ASVs Level %

All (except Neomys) 2668 Within individual 16.92

6555 Between individuals 41.58

1393 Between species 8.84

1918 Between genera 12.17

3230 Between families 20.49

15 764 Total 100.00

Apodemus 1058 Within individual 40.15

1347 Between individuals 51.09

231 Between species 8.77

2636 Total 100.00

Microtus 2093 Within individual 30.46

3637 Between individuals 52.95

1139 Between species 16.58

6869 Total 100.00

Sorex 1190 Within individual 18.38

3863 Between individuals 59.67

1421 Between species 21.95

6474 Total 100.00

© 2019 John Wiley & Sons Ltd/CNRS.
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dietary niche in shaping the gut microbiota (Amato et al.
2018), and that although members of species living in closer
geographic proximity (Moeller et al. 2013) or even at a similar
level in the forest canopy (Perofsky et al. 2018) converge in
their microbiota, community composition remains most
strongly predicted by species identity. By contrast, studies on
the gut microbiota of distantly related artiodactyl species
(Moeller et al. 2017) and the skin microbiota of congeneric
salamanders (Bird et al. 2018; Muletz Wolz et al. 2018) sug-
gest that a shared environment can drive community similar-
ity more strongly than host phylogenetic proximity. The
dominance of species identity over environment we find may
therefore not be universal, and further studies are needed to
assess the generality of this pattern across different host taxa
and microbial community types.
What drives the species signature we find in the microbiota

of congeneric small mammals? Vertical inheritance and host-

symbiont codiversification is one possibility, and recent studies
have provided evidence this process occurs for some mam-
malian gut bacteria (Moeller et al. 2016; Groussin et al.
2017). Consistent with a role for codiversification, in mice and
voles we found that the microbiota of closely related species
was most easily distinguished when considering recently
diverged bacterial groups (Fig. 5), a pattern also recently
found across a broader range of mammals (Groussin et al.
2017), but not in primates (Sanders et al. 2014; Amato et al.
2018). The microbiota of different Apodemus species was also
more distinct than that of Microtus species (which diverged
more recently; Kumar et al. 2017). This is consistent with a
positive correlation between microbiota distinctness and host
divergence time, as expected under codiversification and previ-
ously shown for other mammals in the lab (Brooks et al.
2016) and the wild (Moeller et al. 2017). A broader phyloge-
netic analysis using markers with greater resolution than 16S

Figure 2 Clustering of gut microbial communities in three genera of small mammals according to species identity and capture site. (a–c) Hierarchical

clustering of samples according to Bray-Curtis dissimilarity. Dendrograms were constructed using UPGMA, with branches coloured according to host

species, and bars indicating which host species and capture site each sample came from. (d–f) Principle coordinate (PCoA) plots based on Bray-Curtis

dissimilarity, with samples coloured by species, and capture sites indicated by symbols.

© 2019 John Wiley & Sons Ltd/CNRS.
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rRNA would be needed to definitively test for codiversifica-
tion between small mammals and their gut microbes. How-
ever, it is also clear that codiversification cannot be the only
process at play here, as species distinguishability remained (al-
beit weaker in rodents) even at the level of bacterial classes,
which diverged long before their hosts. A range of other pro-
cesses could contribute to species distinctness in the gut
microbiota (Davenport et al. 2017). For example, closely

related hosts (members of the same species) are more likely to
share genetic or behavioural mechanisms that drive the hori-
zontal acquisition and retention of similar bacteria from the
environment. These include dietary preferences, innate and
adaptive immune components, gut morphology and mucus
characteristics, all of which can differentially select members
of the microbiota (Kato et al. 2014; Carmody et al. 2015;
Pabst et al. 2016; Sicard et al. 2017; Amato et al. 2018). Of

Figure 3 Pairwise differences in gut microbiota and diet composition according to species identity and capture site. Mean pairwise Bray-Curtis dissimilarity

in microbiota composition (a–c) and stomach contents composition (d–f) according to whether samples came from the same species and/or the same

capture site. Statistical significance is from Monte Carlo permutations: *P < 0.05, **P < 0.001, ***P < 0.0001, n.s. P > 0.05. Black and dark grey bars

indicate tests for species and site main effects respectively, while pale grey bars indicate tests involving species- or site-specific subsets of the data. Plots are

based only on samples (n = 215 in total) for which paired microbiota and diet data were available.

© 2019 John Wiley & Sons Ltd/CNRS.
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these mechanisms, those involving microbes binding to diverse
host epitopes, such as immunoglobulins or mucus glycans,
also have the potential to produce highly specific host-microbe
interactions (Schroeder & Cavacini 2010; Naughton et al.
2013), and generate species differences in the microbiota at a
fine bacterial phylogenetic scale, as observed here. Our data
also suggest diet may play a role generating species differences
in the microbiota. In voles and shrews, we found species dif-
ferences in diet that were maintained in sympatry, and diet
predicted microbiota variation. It is also noteworthy that spe-
cies-specificity in the shrew microbiota was insensitive to bac-
terial phylogenetic resolution, and that the two shrew species
studied differed strongly in diet, with S. araneus often having

eaten earthworms while S. minutus ate only arthropods. Host
selection of different (deeply diverged) gut microbes through
contrasting diet may therefore play a more prominent role
shaping species distinguishability of the gut microbiota in this
genus. Another possibility is that the shrew gut microbiota
includes more symbionts from their animal diet than the
rodent microbiota. This seems plausible given that Proteobac-
teria, the dominant phylum in the earthworm microbiota (Liu
et al. 2018), were much more abundant in earthworm-eating
S. araneus than S. minutus. Overall, our data suggest that
dietary variation is more likely to drive species differences in
the microbiota than act as an environmental factor blurring
them. In this way, we can marry the statements that diet has
important effects on the mammalian gut microbiota, but that
host genetics is still the ultimate force shaping these communi-
ties at this host phylogenetic scale.
We also found that not all members of the microbiota were

equally important for distinguishing host species. Members of
the order Bacteroidales were key drivers of host species distin-
guishability in rodents. In particular, the family S24-7 were
important, a group found almost exclusively in the gut of
homeothermic animals (Ormerod et al. 2016) and abundant
and diverse in the wild rodents we sampled. Why some bacte-
rial groups are more host specific than others is an interesting
open question. One possibility is that some bacteria are more
amenable to host selection via immunity (Benson et al. 2010;
Kurilshikov et al. 2017), adhesion (McLoughlin et al. 2016)
or consumption of host mucus (Sicard et al. 2017). Interest-
ingly, members of the S24-7 family vary in their trophic guild,
with some degrading plant glycans while others degrade host
glycans (Ormerod et al. 2016), as well as their degree of IgA
coating (Bunker et al. 2015). Such differences in biology war-
rant further investigation as potential mediators of host speci-
ficity.

Figure 4 Representation of bacterial families among sequence variants

most informative in species-classification Random Forest Classifier (RFC)

models compared to the full dataset. Bars indicate proportion of sequence

variants from each family in the full dataset (All) compared to their

representation among the the top 20 most important sequence variants

for accurately assigning samples to host species(RFC top 20).

Figure 5 Factors affecting the strength of the host species signal in small mammal gut microbiota. (a) Strength of species and capture site effects within

each host genus as estimated using R2 from a PERMANOVA based on Bray-Curtis dissimilarity, with increasing agglomeration of branches (sequence variants)

in the bacterial phylogeny. The x-axis indicates the parameter value used to define bacterial groups using the tip_glom function in phyloseq (b) principle

coordinates analysis (PCoA) plots showing how clustering of samples by host species within each genus varies across four dissimilarity metrics that differ in

their sensitivity to the phylogenetic relatedness and abundance of bacterial sequence variants. R2 values from PERMANOVAs testing the species effect are

shown on each plot.

© 2019 John Wiley & Sons Ltd/CNRS.
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In summary, we find across three small mammal genera
that the gut microbiota is highly species-specific, and that
while sharing a habitat drives some convergence in commu-
nity composition among members of closely related species,
this is insufficient to override the dominant signature of spe-
cies identity. Moreover, in rodents, host species distinguisha-
bility in the microbiota was greatest at the tips of the
bacterial phylogeny, and driven largely by members of the
Bacteroidales. An important future goal will be to under-
stand the processes driving host specificity in the mammalian
microbiota, and why different gut bacteria vary in the
strength of their association with a particular host species.
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